In vitro models of cardiac hypertrophy focus exclusively on applying "external" dynamic signals (electrical, mechanical, and chemical) to achieve a hypertrophic state. In contrast, here we set out to demonstrate the role of "self-organized" cellular architecture and activity in reprogramming cardiac cell/tissue function toward a hypertrophic phenotype. We report that in neonatal rat cardiomyocyte culture, subtle out-of-plane microtopographic cues alter cell attachment, increase biomechanical stresses, and induce not only structural remodeling, but also yield essential molecular and electrophysiological signatures of hypertrophy.
View Article and Find Full Text PDFJ Cardiovasc Electrophysiol
December 2007
Introduction: Most cardiac arrhythmias are associated with pathology-triggered ion channel remodeling. However, multicellular effects, for example, exaggerated anisotropy and altered cell-to-cell coupling, can also indirectly affect action potential morphology and electrical stability via changed electrotonus. These changes are particularly relevant in structural heart disease, including hypertrophy and infarction.
View Article and Find Full Text PDFThe structural and functional effects of fine-textured matrices with sub-micron features on the growth of cardiac myocytes were examined. Electrospinning was used to fabricate biodegradable non-woven poly(lactide)- and poly(glycolide)-based (PLGA) scaffolds for cardiac tissue engineering applications. Post-processing was applied to achieve macro-scale fiber orientation (anisotropy).
View Article and Find Full Text PDFCellulose and its derivatives have been successfully employed as biomaterials in various applications, including dialysis membranes, diffusion-limiting membranes in biosensors, in vitro hollow fibers perfusion systems, surfaces for cell expansion, etc. In this study, we tested the potential of cellulose acetate (CA) and regenerated cellulose (RC) scaffolds for growing functional cardiac cell constructs in culture. Specifically, we demonstrate that CA and RC surfaces are promoting cardiac cell growth, enhancing cell connectivity (gap junctions) and electrical functionality.
View Article and Find Full Text PDF