Publications by authors named "Chiung Mei Chen"

Misfolding and accumulation of amyloid-β (Aβ) in the brains of patients with Alzheimer's disease (AD) lead to neuronal loss through various mechanisms, including the downregulation of eukaryotic elongation factor 2 (EEF2) protein synthesis signaling. This study investigated the neuroprotective effects of indole and coumarin derivatives on Aβ folding and EEF2 signaling using SH-SY5Y cells expressing Aβ-green fluorescent protein (GFP) folding reporter. Among the tested compounds, two indole (NC009-1, -6) and two coumarin (LM-021, -036) derivatives effectively reduced Aβ misfolding and associated reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Background: Patients with Parkinson's disease (PD) present progressive deterioration in both motor and non-motor manifestations. However, the absence of clinical biomarkers for disease progression hinders clinicians from tailoring treatment strategies effectively.

Objectives: To identify electroencephalography (EEG) biomarker that can track disease progression in PD.

View Article and Find Full Text PDF

Aims: This study aimed to identify metabolic markers for diabetic peripheral neuropathic pain (DPNP) in patients with type 2 diabetes mellitus (T2DM).

Materials And Methods: Blood metabolite levels in the amino acid, biogenic amine, sphingomyelin, phosphatidylcholine (PC), carnitines, and hexose classes were analyzed in nondiabetic control (n = 27), T2DM without DPNP (n = 58), and T2DM with DPNP (n = 29) using liquid chromatography tandem mass spectrometry. Variable importance projection (VIP) evaluation by partial least squares discriminant analysis was performed on clinical parameters and metabolites.

View Article and Find Full Text PDF

Background: In Parkinson's disease (PD) brains, microglia are activated to release inflammatory factors to induce the production of reactive oxygen species (ROS) in neuron, and vice versa. Moreover, neuroinflammation and its synergistic interaction with oxidative stress contribute to the pathogenesis of PD.

Methods: In this study, we investigated whether in-house synthetic coumarin-chalcone derivatives protect human microglia HMC3 and neuroblastoma BE(2)-M17 cells against 1-methyl-4-phenyl pyridinium (MPP)-induced neuroinflammation and associated neuronal damage.

View Article and Find Full Text PDF

Polyglutamine (polyQ)-mediated spinocerebellar ataxia (SCA), including SCA1, 2, 3, 6, 7, and 17, are caused by mutant genes with expanded CAG repeats, leading to the intracellular accumulation of aggregated proteins, the production of reactive oxygen species, and cell death. Among SCA, SCA3 is caused by a mutation in the ATXN3 (ataxin-3) gene. In a circumstance of polyQ aggregation, the autophagic pathway is induced to degrade the aggregated proteins, thereby suppressing downstream deleterious effects and promoting neuronal survival.

View Article and Find Full Text PDF

Huntington's disease (HD) is associated with dysregulated choline metabolism, but the underlying mechanisms remain unclear. This study investigated the expression of key enzymes in this pathway in R6/2 HD mice and human HD postmortem brain tissues. We further explored the therapeutic potential of modulating choline metabolism for HD.

View Article and Find Full Text PDF

Huntington's disease (HD) is characterized by progressive involuntary chorea movements and cognitive decline. Recent research indicates that metabolic disturbance may play a role in its pathogenesis. Bile acids, produced during cholesterol metabolism in the liver, have been linked to neurodegenerative conditions.

View Article and Find Full Text PDF

Trinucleotide repeat expansion disorders, a diverse group of neurodegenerative diseases, are caused by abnormal expansions within specific genes. These expansions trigger a cascade of cellular damage, including protein aggregation and abnormal RNA binding. A key contributor to this damage is oxidative stress, an imbalance of reactive oxygen species that harms cellular components.

View Article and Find Full Text PDF

Anti-glutamatergic agents may have neuroprotective effects against excitotoxicity that is known to be involved in the pathogenesis of Parkinson's disease (PD). One of these agents is kynurenic acid (KYNA), a tryptophan metabolite, which is an endogenous N-methyl-D-aspartic acid (NMDA) receptor antagonist. However, its pharmacological properties of poor water solubility and limited blood-brain barrier (BBB) permeability rules out its systemic administration in disorders affecting the central nervous system.

View Article and Find Full Text PDF
Article Synopsis
  • - This study explores the effects of comorbidities on the relapse rates of patients with Neuromyelitis optica spectrum disorder (NMOSD) in Taiwan, based on data collected from 485 patients over 15 years.
  • - The results showed that the median annualized relapse rates (ARR) were similar for adult and pediatric patients and that common comorbidities like malignancy and autoimmune diseases did not significantly affect ARR in the first three years post-diagnosis.
  • - The researchers found a notably higher risk of malignancy in adult NMOSD patients compared to the general population, suggesting the need for further investigation into how these two conditions may be related.
View Article and Find Full Text PDF

Parkinson's disease (PD) is a common neurodegenerative disease with progressive loss of dopaminergic neurons in substantia nigra and the presence of α-synuclein-immunoreactive inclusions. Gaucher's disease is caused by homozygous mutations in β-glucocerebrosidase gene (GBA). GBA mutation carriers have an increased risk of PD.

View Article and Find Full Text PDF

At least seven dominantly inherited spinocerebellar ataxias (SCA) are caused by expansions of polyglutamine (polyQ)-encoding CAG repeat. The misfolded and aggregated polyQ-expanded proteins increase reactive oxygen species (ROS), cellular toxicity, and neuroinflammation in the disease pathogenesis. In this study, we evaluated the anti-inflammatory potentials of coumarin derivatives LM-021, LMDS-1, LMDS-2, and pharmacological chaperone tafamidis using mouse BV-2 microglia and SCA3 ataxin-3 (ATXN3)/Q-GFP SH-SY5Y cells.

View Article and Find Full Text PDF

Background: Distal symmetric sensorimotor polyneuropathy (DSPN) is a common neurologic complication of type 2 diabetes mellitus (T2DM), but the underlying mechanisms and changes in serum metabolites remain largely undefined. This study aimed to characterize the plasma metabolite profiles of participants with T2DM using targeted metabolomics analysis and identify potential biomarkers for DSPN.

Methods: A combined liquid chromatography MS/MS and direct flow injection were used to quantify plasma metabolite obtained from 63 participants with T2DM, 81 with DSPN, and 33 nondiabetic control participants.

View Article and Find Full Text PDF

Parkinson's disease (PD) is featured mainly by the loss of dopaminergic neurons and the presence of α-synuclein-containing aggregates in the substantia nigra of brain. The α-synuclein fibrils and aggregates lead to increased oxidative stress and neural toxicity in PD. Chronic inflammation mediated by microglia is one of the hallmarks of PD pathophysiology.

View Article and Find Full Text PDF

Background: Parsonage-Turner Syndrome (PTS) is a rare brachial plexopathy characterized by the sudden onset of pain in the shoulder girdle followed by upper limb weakness. PTS is frequently under-recognized or misdiagnosed as other more common neurological disorders presenting in a similar fashion, such as cervical radiculopathy which may require surgical intervention. Accurate diagnosis and prompt management implicate a good prognosis.

View Article and Find Full Text PDF

Abnormal polyglutamine (polyQ) expansion and fibrillization occur in Huntington's disease (HD). Amyloid modifier SERF enhances amyloid formation, but the underlying mechanism is not revealed. Here, the fibrillization and toxicity effect of SERF1a on Htt-exon1 are examined.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on myasthenia gravis (MG) patients experiencing myasthenic crises (MC) triggered by infections, highlighting a gap in prognostic factors for recurrent MC, which can worsen patient outcomes.
  • - A total of 272 MG patients were analyzed, revealing that older patients and those with certain comorbidities, such as diabetes and specific electrolyte imbalances, are more likely to face recurrent infections.
  • - Key findings indicated that pneumonia was the most common infection and identified various associated risk factors for recurrent infection-triggered MC, which can aid clinicians in tailoring prevention strategies.
View Article and Find Full Text PDF

Increased oxidative stress and neuroinflammation play a crucial role in the pathogenesis of Parkinson's disease (PD). In this study, the expression levels of 52 genes related to oxidative stress and inflammation were measured in peripheral blood mononuclear cells of the discovery cohort including 48 PD patients and 25 healthy controls. Four genes, including , , , and , were found to be upregulated in PD patients.

View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive and devastating neurodegenerative disease marked by inheritable CAG nucleotide expansion. For offspring of HD patients carrying abnormal CAG expansion, biomarkers that predict disease onset are crucially important but still lacking. Alteration of brain ganglioside patterns has been observed in the pathology of patients carrying HD.

View Article and Find Full Text PDF

Misfolded aggregation of the hyperphosphorylated microtubule binding protein Tau in the brain is a pathological hallmark of Alzheimer's disease (AD). Tau aggregation downregulates brain-derived neurotrophic factor (BDNF)/tropomycin receptor kinase B (TRKB) signaling and leads to neurotoxicity. Therefore, enhancement of BDNF/TRKB signaling could be a strategy to alleviate Tau neurotoxicity.

View Article and Find Full Text PDF

Neuroinflammation and oxidative stress have been emerging as important pathways contributing to Parkinson's disease (PD) pathogenesis. In PD brains, the activated microglia release inflammatory factors such as interleukin (IL)-β, IL-6, tumor necrosis factor (TNF)-α, and nitric oxide (NO), which increase oxidative stress and mediate neurodegeneration. Using 1-methyl-4-phenylpyridinium (MPP)-activated human microglial HMC3 cells and the sub-chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD, we found the potential of indole derivative NC009-1 against neuroinflammation, oxidative stress, and neurodegeneration for PD.

View Article and Find Full Text PDF

Alterations in lipid composition and disturbed lipoprotein metabolism are involved in the pathomechanism of Huntington's disease (HD). Here, we measured 112 lipoprotein subfractions and components in the plasma of 20 normal controls, 24 symptomatic (sympHD) and 9 presymptomatic (preHD) HD patients. Significant changes were found in 30 lipoprotein subfractions and components in all HD patients.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease with progressive memory loss and the cognitive decline. AD is mainly caused by abnormal accumulation of misfolded amyloid β (Aβ), which leads to neurodegeneration via a number of possible mechanisms such as down-regulation of brain-derived neurotrophic factor-tropomyosin-related kinase B (BDNF-TRKB) signaling pathway. 7 ,8-Dihydroxyflavone (7,8-DHF), a TRKB agonist, has demonstrated potential to enhance BDNF-TRKB pathway in various neurodegenerative diseases.

View Article and Find Full Text PDF