A Wheatstone bridge giant magnetoresistance (GMR) biosensor was proposed here for the detection and counting of magnetic cells. The biosensor was made of a top-pinned spin-valve layer structure, and it was integrated with a microchannel possessing the function of hydrodynamic focusing that allowed the cells to flow in series one by one and ensured the accuracy of detection. Through measuring the magnetoresistance variation caused by the stray field of the magnetic cells that flowed through the microchannel above the GMR biosensor, we can not only detect and count the cells but we can also recognize cells with different magnetic moments.
View Article and Find Full Text PDFA method is here proposed to fabricate ordered hexagonally packed cell culture substrates with hexagonally arranged cell patterning areas. We generated photo-sensitive polymeric microdroplets in a T-shaped microfluidic junction by an immiscible liquid, and then solidified the collective self-assembled hexagonal droplet array to obtain the cell culture substrate, on which we took the grooves formed between the solidified droplets as the hexagonally arranged cell patterning areas. The most promising advantage of our method is that we can actively tune the droplet size by simply adopting different volumetric flow rates of the two immiscible fluids to form cell culture substrates with differently sized cell patterning areas.
View Article and Find Full Text PDFThe change of contact angle is one of the major subjects in the studies of electrowetting on dielectrics. A larger change in contact angle with a less applied electric potential has been pursued by the researchers on digital microfluidics. From previous research it is concluded that the effect of free charges in electrolytes on contact angles can almost be neglected.
View Article and Find Full Text PDFThis study experimentally verifies that the mixing process in a droplet can be enhanced by driving the droplet at resonant frequencies and at alternating driving frequencies using a parallel-plate electrowetting on dielectric device. The mixing time, which is defined as the time required for reaching the well-mixed state, in a resonant droplet is found to be significantly shorter than that in a non-resonant droplet. Besides, it is also found that a higher driving potential leads to a better mixing effect, especially at resonant frequencies.
View Article and Find Full Text PDF