Abnormal synaptic formation and signaling is one of the key molecular features of autism spectrum disorders (ASD). Cortactin binding protein 2 (CTTNBP2), an ASD-linked gene, is known to regulate the subcellular distribution of synaptic proteins, such as cortactin, thereby controlling dendritic spine formation and maintenance. However, it remains unclear how ASD-linked mutations of CTTNBP2 influence its function.
View Article and Find Full Text PDFAllelic expression from each parent-of-origin is important as a backup and to ensure that enough protein products of a gene are produced. Thus far, it is not known how each cell throughout a tissue differs in parental allele expression at the level of protein synthesis. Here, we measure the expression of the Ribosomal protein L13a (Rpl13a) from both parental alleles simultaneously in single cells in the living animal.
View Article and Find Full Text PDFPrecise genome editing using CRISPR typically requires delivery of guide RNAs, Cas9 endonuclease, and DNA repair templates. Both microinjection and electroporation effectively deliver these components into mouse zygotes provided the DNA template is an oligonucleotide of only a few hundred base pairs. However, electroporation completely fails with longer double-stranded DNAs leaving microinjection as the only delivery option.
View Article and Find Full Text PDFCell lines expressing foreign genes have been widely used to produce a variety of recombinant proteins. However, generating recombinant protein-expressing cell lines is usually a lengthy process and the resulting protein expression levels are often inconsistent. Here, we describe an efficient method for making stable cell lines expressing any recombinant protein of interest in a controllable and quantifiable manner.
View Article and Find Full Text PDFAccurate measurement of the amount of specific protein a cell produces is important for investigating basic molecular processes. We have developed a technique that allows for quantitation of protein levels in single cells in vivo. This protein quantitation ratioing (PQR) technique uses a genetic tag that produces a stoichiometric ratio of a fluorescent protein reporter and the protein of interest during protein translation.
View Article and Find Full Text PDF