Publications by authors named "Chitra L Dahia"

The transition from notochord to vertebral column is a crucial milestone in chordate evolution and in prenatal development of all vertebrates. As ossification of the vertebral bodies proceeds, involutions of residual notochord cells into the intervertebral discs form the nuclei pulposi, shock-absorbing structures that confer flexibility to the spine. Numerous studies have outlined the developmental and evolutionary relationship between notochord and nuclei pulposi.

View Article and Find Full Text PDF

Purpose: Aging is a risk factor for several debilitating conditions including those related to chronic back pain and intervertebral disc degeneration, both of which have no cure. Mouse models are useful tools for studying disc degeneration and chronic back pain in a tightly controlled and clinically relevant aging environment. Moreover, mice offer the advantage of carrying out longitudinal studies to understand the etiology and progression of disc pathology induced by genetic or surgical strategies.

View Article and Find Full Text PDF

Osteoclasts are bone-resorbing cells that play an essential role in homeostatic bone remodeling and pathological bone erosion. Macrophage colony stimulating factor (M-CSF) is abundant in rheumatoid arthritis (RA). However, the role of M-CSF in arthritic bone erosion is not completely understood.

View Article and Find Full Text PDF

Background: Histopathological analysis of intervertebral disc (IVD) tissues is a critical domain of back pain research. Identification, description, and classification of attributes that distinguish abnormal tissues form a basis for probing disease mechanisms and conceiving novel therapies. Unfortunately, lack of standardized methods and nomenclature can limit comparisons of results across studies and prevent organizing information into a clear representation of the hierarchical, spatial, and temporal patterns of IVD degeneration.

View Article and Find Full Text PDF

This perspective summarizes the genesis, development, and potential future directions of the multispecies histopathology series.

View Article and Find Full Text PDF

Mice have been increasingly used as preclinical model to elucidate mechanisms and test therapeutics for treating intervertebral disc degeneration (IDD). Several intervertebral disc (IVD) histological scoring systems have been proposed, but none exists that reliably quantitate mouse disc pathologies. Here, we report a new robust quantitative mouse IVD histopathological scoring system developed by building consensus from the spine community analyses of previous scoring systems and features noted on different mouse models of IDD.

View Article and Find Full Text PDF

The fifth biennial ORS PSRS International Spine Research Symposium took place from November 3 to 7, 2019, at Skytop Lodge in northeastern Pennsylvania. Organized jointly by the Orthopaedic Research Society and the Philadelphia Spine Research Society, the symposium attracted more than 180 participants from 10 different countries to share the latest advances in basic and preclinical spine research. Following the symposium, participants were invited to submit full-length manuscripts to this special issue of JOR Spine.

View Article and Find Full Text PDF

Aging is a major risk factor for numerous painful, inflammatory, and degenerative diseases including disc degeneration. A better understanding of how the somatosensory nervous system adapts to the changing physiology of the aging body will be of great significance for our expanding aging population. Previously, we reported that chronological aging of mouse lumbar discs is pathological and associated with behavioral changes related to pain.

View Article and Find Full Text PDF

Intervertebral disc degeneration is the most significant, and least understood, cause of chronic back pain, affecting almost one in seven individuals at some point of time. Each intervertebral disc has three components; central nucleus pulposus (NP), concentric layers of annulus fibrosus (AF), and a pair of end plate (EP) that connects the disc to the vertebral bodies. Understanding the molecular and cellular basis of intervertebral disc growth, health, and aging will generate significant information for developing therapeutic approaches.

View Article and Find Full Text PDF

Aging is a major risk factor of intervertebral disc degeneration and a leading cause of back pain. Pathological changes associated with disc degeneration include the absence of large, vacuolated and reticular-shaped nucleus pulposus cells, and appearance of smaller cells nested in lacunae. These small nested cells are conventionally described as chondrocyte-like cells; however, their origin in the intervertebral disc is unknown.

View Article and Find Full Text PDF

Intervertebral disc degeneration and associated back pain are relatively common but sparsely understood conditions, affecting over 70% of the population during some point of life. Disc degeneration is often associated with a loss of nucleus pulposus (NP) cells. Genetic mouse models offer convenient avenues to understand the cellular and molecular regulation of the disc during its formation, growth, maintenance, and aging.

View Article and Find Full Text PDF

Intervertebral discs are cartilaginous joints present between vertebrae. The centers of the intervertebral discs consist of a gelatinous nucleus pulposus derived from the embryonic notochord. With age or injury, intervertebral discs may degenerate, causing neurological symptoms including back pain, which affects millions of people worldwide.

View Article and Find Full Text PDF

With the increased burden of low back pain (LBP) in our globally aging population there is a need to develop preclinical models of LBP that capture clinically relevant features of physiological aging, degeneration, and disability. Here we assess the validity of using a mouse model system for age-related LBP by characterizing aging mice for features of intervertebral disc (IVD) degeneration, molecular markers of peripheral sensitization, and behavioral signs of pain. Compared to three-month-old and one-year-old mice, two-year-old mice show features typical of IVD degeneration including loss of disc height, bulging, innervation and vascularization in the caudal lumbar IVDs.

View Article and Find Full Text PDF

This paper is a concise review aiming to assemble the most relevant topics presented by the authors at ORS-Philadelphia Spine Research Society . It centers on the latest advances in disc development, its main structural entities, and the populating cells, with emphasis on the advances in pivotal molecular pathways responsible for forming the intervertebral discs (IVD). The objective of finding and emphasizing pathways and mechanisms that function to control tissue formation is to identify and to explore modifications occurring during normal aging, disease, and tissue repair.

View Article and Find Full Text PDF

A Purpose Of Review: The intervertebral discs (IVD) are an essential component of the spine. Degeneration of the discs, commonly due to age or injury, is a leading cause of chronic lower back pain. Despite its high prevalence, there is no effective treatment for disc disease due to limited understanding of disc at the cellular and molecular level.

View Article and Find Full Text PDF

In humans, the sacrum forms an important component of the pelvic arch, and it transfers the weight of the body to the lower limbs. The sacrum is formed by collapse of the intervertebral discs (IVDs) between the five sacral vertebrae during childhood, and their fusion to form a single bone. We show that collapse of the sacral discs in the mouse is associated with the down-regulation of sonic hedgehog (SHH) signaling in the nucleus pulposus (NP) of the disc, and many aspects of this phenotype can be reversed by experimental postnatal activation of hedgehog (HH) signaling.

View Article and Find Full Text PDF

The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population.

View Article and Find Full Text PDF

Intervertebral discs (IVDs) are strong fibrocartilaginous joints that connect adjacent vertebrae of the spine. As discs age they become prone to failure, with neurological consequences that are often severe. Surgical repair of discs treats the result of the disease, which affects as many as one in seven people, rather than its cause.

View Article and Find Full Text PDF

Intervertebral discs (IVD) are essential components of the vertebral column. They maintain separation, and provide shock absorbing buffers, between adjacent vertebrae, while also allowing movements between them. Each IVD consists of a central semi-liquid nucleus pulposus (NP) surrounded by a multi-layered fibrocartilagenous annulus fibrosus (AF).

View Article and Find Full Text PDF

Study Design: Vertebral growth plates at different postnatal ages were assessed for active intercellular signaling pathways.

Objective: To generate a spatial and temporal map of the major signaling pathways active in the postnatal mouse lumbar vertebral growth plate.

Summary Of Background Data: The growth of all long bones is known to occur by cartilaginous growth plates.

View Article and Find Full Text PDF

Study Design: This study follows postnatal intervertebral disc (IVD) growth and differentiation in the mouse. OBJECTIVE.: To initiate use of the mouse as a model system for postnatal IVD differentiation and growth, and to serve as a basis for assaying changes caused by disease or genetic or experimental perturbation.

View Article and Find Full Text PDF

Study Design: Intervertebral discs at different postnatal ages were assessed for active intercellular signaling pathways.

Objective: To generate a spatial and temporal map of the signaling pathways active in the postnatal intervertebral disc (IVD).

Summary Of Background Data: The postnatal IVD is a complex structure, consisting of 3 histologically distinct components, the nucleus pulposus, fibrous anulus fibrosus, and endplate.

View Article and Find Full Text PDF

The growth and function of the epididymis are regulated by testosterone produced by Leydig cells in the testes. In the present study it was observed that neutralization of endogenous follicle stimulating hormone (FSH) in immature rats using a highly specific antiserum to ovine FSH resulted in changes in the histology of the epididymis along with a decrease (50-60%) in its weight compared with the normal serum-treated controls. These changes were observed in both rat and monkey epididymis without any decrease in serum testosterone, on which epididymis is known to be dependent.

View Article and Find Full Text PDF