For centuries, humanity has been captivated by evolution, seeking to unravel the origins of life and identify past patterns with future applications. Viruses, despite their obligate parasitic nature, are the most adaptable biological entities, surpassing cellular life in their variability and adaptability. While many theories about viral evolution exist, a consensus on their origins remains elusive.
View Article and Find Full Text PDFGrafting has been exploited since 7000 BC to enhance productivity, disease resistance, and adaptability of cultivated plants to stressful conditions especially in woody crops such as grapevine (Vitis spp.). In contrast, the application of sequence specific double-stranded RNAs (dsRNAs) to control fungal pathogens and insect pests has only been recently developed.
View Article and Find Full Text PDFPhysiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock-mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to environmental stresses. Nonetheless, fundamental knowledge on this subject needs to be widened, especially in some woody species, including European hazelnut (Corylus avellana L).
View Article and Find Full Text PDFThe implementation of genome editing strategies in grapevine is the easiest way to improve sustainability and resilience while preserving the original genotype. Among others, the Mildew Locus-O (MLO) genes have already been reported as good candidates to develop powdery mildew-immune plants. A never-explored grapevine target is NPR3, a negative regulator of the systemic acquired resistance.
View Article and Find Full Text PDFPriming modulates plant stress responses before the stress appears, increasing the ability of the primed plant to endure adverse conditions and thrive. In this context, we investigated the effect of biological (i.e.
View Article and Find Full Text PDFPlants rely on solar energy for growth through photosynthesis, yet excessive light intensity can induce physiological damage. Despite the considerable harm, inadequate attention has been directed toward understanding how plant-associated microorganisms mitigate this stress, and the impact of high light intensity on plant microbial communities remains underexplored. Through this Viewpoint, we aim to highlight the potential of microbial communities to enhance plant resilience and understand how light stress can shape plant microbiome.
View Article and Find Full Text PDFAims: The work presented here was conducted to characterize the biodiversity of a collection of bacterial isolates, mainly wood endophytes, as part of a research project focused on exploring their bioprotective potential for postharvest biological control of fruits.
Methods And Results: This work was the basis for the development of a tailored method combining 16S rDNA sequencing and Rep-PCR to differentiate the isolates and identify them to genus level or below. More than one hundred isolates obtained from wood and roots of different grapevine genotypes were cultured on appropriate growth media and then subjected to the specified multistep molecular identification.
Drought tolerance varies greatly across Vitis vinifera cultivars, depending on physiological responses and structural and morphological adaptations. In this study, responses to water stress were examined in three extensively cultivated varieties from Northern Italy. Over the course of two seasons, mature potted vines were subjected to a 12 or 13-day period of water restriction.
View Article and Find Full Text PDFThe need to minimise the impact of phytosanitary treatments for disease control boosted researchers to implement techniques with less environmental impact. The development of technologies using molecular mechanisms based on the modulation of metabolism by short dsRNA sequences appears promising. The intrinsic fragility of polynucleotides and the high cost of these techniques can be circumvented by nanocarriers that protect the bioactive molecule enabling high efficiency delivery to the leaf surface and extending its half-life.
View Article and Find Full Text PDFLegumes maintain soil fertility thanks to their associated microbiota but are threatened by climate change that causes soil microbial community structural and functional modifications. The core microbiome associated with different chickpea and lentil genotypes was described after an unexpected climatic event. Results showed that chickpea and lentil bulk soil microbiomes varied significantly between two sampling time points, the first immediately after the rainfall and the second 2 weeks later.
View Article and Find Full Text PDFDrought stress is one of the major physiological stress factors that adversely affect agricultural production, altering critical features of plant growth and metabolism. Plants can be subjected simultaneously to abiotic and biotic stresses, such as drought and viral infections. Rewarding effects provided by viruses on the ability of host plants to endure abiotic stresses have been reported.
View Article and Find Full Text PDFViruses can interfere with the ability of plants to overcome abiotic stresses, indicating the existence of common molecular networks that regulate stress responses. A begomovirus causing the tomato yellow leaf curl disease was recently shown to enhance heat tolerance in tomato and drought tolerance in tomato and and experimental evidence suggested that the virus-encoded protein C4 is the main trigger of drought responses. However, the physiological and molecular events underlying C4-induced drought tolerance need further elucidation.
View Article and Find Full Text PDFTo understand how grapevine sinks compete with each other during water stress and subsequent rehydration, carbon (C) allocation patterns in drought-rehydrated vines (REC) at the beginning of fruit ripening were compared with control vines maintained under drought (WS) or fully irrigated (WW). In the 30 days following rehydration, the quantity and distribution of newly fixed C between leaves, roots and fruits was evaluated through CO pulse-labeling and stable isotope ratio mass spectrometry. REC plants diverted the same percentage of fixed C towards the berries as the WS plants, although the percentage was higher than that of WW plants.
View Article and Find Full Text PDFIn the past years, breeding programs have been mainly addressed on pushing the commercial features, forgetting important traits, such as those related to environmental stress resilience, that are instead present in wild relatives. Among the traits neglected by breeding processes, the ability to recruit beneficial microorganisms that recently is receiving a growing attention due to its potentiality. In this context, this review will provide a spotlight on critical issues of the anthropocentric point of view that, until now, has characterized the selection of elite plant genotypes.
View Article and Find Full Text PDFDomestication processes, amplified by breeding programs, have allowed the selection of more productive genotypes and more suitable crop lines capable of coping with the changing climate. Notwithstanding these advancements, the impact of plant breeding on the ecology of plant-microbiome interactions has not been adequately considered yet. This includes the possible exploitation of beneficial plant-microbe interactions to develop crops with improved performance and better adaptability to any environmental scenario.
View Article and Find Full Text PDFHalyomorpha halys (Stål, 1855) (Hemiptera: Pentatomidae), the brown marmorated stink bug, is an invasive pentatomid native to East-Asia, and introduced worldwide in recent times. It is a polyphagous pest with approximately 300 host plants, which, due to its plasticity, reproductive and feeding behavior, long-distance flight, and walking as well as human-mediated dispersal ability, is able to cause significant economic and ecological damage. In several cases pest control mediated by insecticide treatments leads to unsatisfactory efficacy, mostly due to insect recovery ability.
View Article and Find Full Text PDFRecalcitrant adventitious root (AR) development is a major hurdle in propagating commercially important woody plants. Although significant progress has been made to identify genes involved in subsequent steps of AR development, the molecular basis of differences in apparent recalcitrance to form AR between easy-to-root and difficult-to-root genotypes remains unknown. To address this, we generated cambium tissue-specific transcriptomic data from stem cuttings of hybrid aspen, T89 (difficult-to-root) and hybrid poplar OP42 (easy-to-root), and used transgenic approaches to verify the role of several transcription factors in the control of adventitious rooting.
View Article and Find Full Text PDFBackground: Reduction of fungicide consumption in agriculture is globally recognized as a priority. Government authorities are fostering research to achieve a reduction of risks associated with conventional pesticides and promoting the development of sustainable alternatives. To address these issues, in the present study, alternative protocols for the control of downy mildew infection in grapevine were compared to the standard protocol.
View Article and Find Full Text PDFGrapevine (Vitis spp.) is a widespread fruit tree hosting many viral entities that interact with the plant modifying its responses to the environment. The production of virus-free plants is becoming increasingly crucial for the use of grapevine as a model species in different studies.
View Article and Find Full Text PDFNowadays, the worldwide agriculture is experiencing a transition process toward more sustainable production, which requires the reduction of chemical inputs and the preservation of microbiomes' richness and biodiversity. Plants are no longer considered as standalone entities, and the future of agriculture should be grounded on the study of plant-associated microorganisms and all their potentiality. Moreover, due to the climate change scenario and the resulting rising incidence of abiotic stresses, an innovative and environmentally friendly technique in agroecosystem management is required to support plants in facing hostile environments.
View Article and Find Full Text PDFThe importance of plants as complex entities influenced by genomes of the associated microorganisms is now seen as a new source of variability for a more sustainable agriculture, also in the light of ongoing climate change. For this reason, we investigated through metatranscriptomics whether the taxa profile and behaviour of microbial communities associated with the wood of 20-year-old grapevine plants are influenced by the health status of the host. We report for the first time a metatranscriptome from a complex tissue in a real environment, highlighting that this approach is able to define the microbial community better than referenced transcriptomic approaches.
View Article and Find Full Text PDFAlong with the ongoing climate change, drought events are predicted to become more severe. In this context, the spray-induced gene silencing (SIGS) technique could represent a useful strategy to improve crop stress resilience. A previous study demonstrated that the Arabidopsis mutants for a glutathione S-transferase (GST) gene had increased abscisic acid (ABA) levels and a more activated antioxidant system, both features that improved drought resilience.
View Article and Find Full Text PDFMicrobial multi-level interactions are essential to control the success of spreading and survival of most microbes in natural environments. Phytopathogenic mycotoxigenic fungal species, such as , represent an important issue in food safety. Usually, non-toxigenic strains are exploited for biocontrol strategies to mitigate infections by toxigenic strains.
View Article and Find Full Text PDF