Publications by authors named "Chistoserdov A"

Background: All chemical forms of energy and oxygen on Earth are generated via photosynthesis where light energy is converted into redox energy by two photosystems (PS I and PS II). There is an increasing number of PS I 3D structures deposited in the Protein Data Bank (PDB). The Triangular Spatial Relationship (TSR)-based algorithm converts 3D structures into integers (TSR keys).

View Article and Find Full Text PDF

Photosystem I (PS I) is a photosynthetic pigment-protein complex that absorbs light and uses the absorbed energy to initiate electron transfer. Electron transfer has been shown to occur concurrently along two (A- and B-) branches of reaction center (RC) cofactors. The electron transfer chain originates from a special pair of chlorophyll molecules (P700), followed by two chlorophylls and one phylloquinone in each branch (denoted as A, A, A, respectively), converging in a single iron-sulfur complex F.

View Article and Find Full Text PDF

Bioturbation plays an important role in structuring microbial communities in coastal sediments. This study investigates the bacterial community composition in sediment associated with the ghost shrimp Lepidophthalmus louisianensis at two locations in the Northern Gulf of Mexico (Bay St. Louis, MS, and Choctawhatchee Bay, FL).

View Article and Find Full Text PDF

The prospect of humans inhabiting planetary bodies is gaining interest among research and development communities, with the moon being considered as a transitory base camp and Mars the next planet humans will inhabit. NASA's Mission to Mars program is set to have humans inhabiting Mars within on-planet space camps by the Year 2030, which has tremendously increased research and development for space exploration-including research oriented toward human life support in long-term planetary lodging camps. The sustenance of human life on Mars will not be trivial due to the unavailability of an appropriate atmosphere and usable water.

View Article and Find Full Text PDF

Here, we report the draft genome sequence of the siderophilic cyanobacterium Fischerella thermalis JSC-11, which was isolated from an iron-depositing hot spring. JSC-11 has bioremediation potential because it is capable of both extracellular absorption and intracellular mineralization of colloidal iron. This genomic information will facilitate the exploration of JSC-11 for bioremediation.

View Article and Find Full Text PDF

The siderophilic, thermophilic cyanobacterium JSC-12 was isolated from a microbial mat in an iron-depositing hot spring. Here, we report the high-quality draft genome sequence of JSC-12, which may help elucidate the mechanisms of resistance to extreme iron concentrations in siderophilic cyanobacteria and lead to new remediation biotechnologies.

View Article and Find Full Text PDF

sp. I31.1 is a putative pathogen involved in epizootic shell disease in the American lobster (Homarus americanus).

View Article and Find Full Text PDF

The relationship between organisms and contaminants may be a two-way interaction: contaminants affecting the biota and the biota affecting the environmental fate and distribution of the contaminants. This may be especially so for sediment-dwelling organisms, because their burrowing and feeding can drastically influence sediment characteristics. The present study looked at the influence of the suspension-feeding stout razor clam Tagelus plebeius on the distribution of crude oil and pyrene in greenhouse mesocosm experiments.

View Article and Find Full Text PDF

Epizootic shell disease (ESD) is causing major losses to the lobster fishery in southern New England. Potential pathogens have been identified in lesion communities, but there are currently no efficient means of detecting and quantifying their presence. A qPCR assay was developed for a key potential pathogen, Aquimarina macrocephali subsp.

View Article and Find Full Text PDF

Acinetobacter baylyi is one of few Gram-negative bacteria capable of accumulating storage lipids in the form of triacylglycerides and wax esters, which makes it an attractive candidate for production of lipophilic products, including biofuel precursors. Thioesterases play a significant dual role in the triacylglyceride and wax ester biosynthesis by either providing or removing acyl-CoA from this pathway. Therefore, 4 different thioesterase genes were cloned from Acinetobacter baylyi ADP1 and expressed in Escherichia coli to investigate their contribution to free fatty acids (FFAs) accumulation.

View Article and Find Full Text PDF

Qualitative expression of dissimilative sulfite reductase (dsrA), a key gene in sulfate reduction, and sulfide:quinone oxidoreductase (sqr), a key gene in sulfide oxidation was investigated. Neither of the two could be amplified from mRNA retrieved with Niskin bottles but were amplified from mRNA retrieved by the Deep SID. The sqr and sqr-like genes retrieved from the Cariaco Basin were related to the sqr genes from a Bradyrhizobium sp.

View Article and Find Full Text PDF

Modern organisms exhibit evidence of many diseases, but recognizing such evidence in fossils remains difficult, thus hampering the study of the evolution of disease. We report on 2 molts of the goniodromitid crabs Distefania incerta and Goniodromites laevis from the mid-Cretaceous (late Albian) of Spain, with both species exhibiting damage to the dorsal carapace in otherwise well-preserved specimens. The subcircular to quadratical holes, found in <0.

View Article and Find Full Text PDF

To date, two types of glycerol dehydratases have been reported: coenzyme B12-dependent and coenzyme B12-independent glycerol dehydratases. The three-dimensional structure of the former is a dimer of αβγ heterotrimer, while that of the latter is a homodimer. Their mechanisms of reaction are typically enzymatic radical catalysis.

View Article and Find Full Text PDF

Massively parallel tag sequencing was applied to describe the bacterial diversity in the redox transition and anoxic zones of the Cariaco Basin. In total, 14 samples from the Cariaco Basin were collected over a period of eight years from two stations. A total of 244 357 unique bacterial V6 amplicons were sequenced.

View Article and Find Full Text PDF

Diseases of lobster shells have a significant impact on fishing industries but the risk of disease transmission between different lobster species has yet to be properly investigated. This study compared bacterial biofilm communities from American (Homarus americanus) and European lobsters (H. gammarus), to assess both healthy cuticle and diseased cuticle during lesion formation.

View Article and Find Full Text PDF

Background: The Cariaco Basin is characterized by pronounced and predictable vertical layering of microbial communities dominated by reduced sulfur species at and below the redox transition zone. Marine water samples were collected in May, 2005 and 2006, at the sampling stations A (10°30' N, 64°40' W), B (10°40' N, 64°45' W) and D (10°43'N, 64°32'W) from different depths, including surface, redox interface, and anoxic zones. In order to enrich for sulfate reducing bacteria (SRB), water samples were inoculated into anaerobic media amended with lactate or acetate as carbon source.

View Article and Find Full Text PDF

Shell disease is a major threat to the American lobster (Homarus americanus, Milne Edwards) fishery. Here we describe the composition of microbial communities associated with lesions of 2 forms of shell disease in Atlantic Canada, (i) a trauma shell disease (TSD) characterized by massive lesions and (ii) an enzootic shell disease (EnSD) characterized by irregularly shaped lesions with a distinct orange to yellow color. The microbiology of the lesions was described by polymerase chain reaction and denaturing gradient gel electrophoresis of 16S rDNA amplified from scrapings of the shell lesions and was compared with communities of unaffected carapaces and previously described forms of shell diseases.

View Article and Find Full Text PDF

Epizootic shell disease (ESD) of the American lobster Homarus americanus H. Milne Edwards, 1837 is a disease of the carapace that presents grossly as large, melanized, irregularly shaped lesions, making the lobsters virtually unmarketable because of their grotesque appearance. We analyzed the bacterial communities present in the hemolymph of lobsters with and without ESD using nested-PCR of the 16S rRNA genes followed by denaturing gradient gel electrophoresis.

View Article and Find Full Text PDF

Redox transition zones play a crucial role in biogeochemical cycles of several major elements. Because microorganisms mediate many reactions of these cycles, they actively participate in establishing geochemical gradients. In turn, the geochemical gradients structure microbial communities.

View Article and Find Full Text PDF

In southern New England, USA, shell disease affects the profitability of the American lobster Homarus americanus fishery. In laboratory trials using juvenile lobsters, exclusive feeding of herring Clupea harengus induces shell disease typified initially by small melanized spots that progress into distinct lesions. Amongst a cohabitated, but segregated, cohort of 11 juvenile lobsters fed exclusively herring, bacterial communities colonizing spots and lesions were investigated by denaturing gradient gel electrophoresis of 16S rDNA amplified using 1 group-specific and 2 universal primer sets.

View Article and Find Full Text PDF

The Cariaco system is the second largest permanently anoxic marine water body in the world. Its water column is characterized by a pronounced vertical layering of microbial communities. The goal of our study was to investigate the vertical distribution and diversity of Vibrio spp.

View Article and Find Full Text PDF

To broaden our knowledge on the diversity of glycerol dehydratases, comprehensive sequence and molecular modelling analyses of these enzymes were performed. Our sequence analysis showed that B₁₂-dependent and B₁₂-independent glycerol dehydratases are not related, suggesting that they evolved from different ancestors. Second, our study demonstrated that a gene fusion event occurred between α and β subunits of B₁₂-dependent glycerol dehydratases in several bacteria during enzyme evolution.

View Article and Find Full Text PDF

Reworked and fluidized fine-grained deposits in energetic settings are a major modern-day feature of river deltas and estuaries. Similar environments were probably settings for microbial evolution on the early Earth. These sedimentary systems act as efficient biogeochemical reactors with high bacterial phylogenetic diversity and functional redundancy.

View Article and Find Full Text PDF