Publications by authors named "Chisom J Onu"

Inositol is an essential metabolite that serves as a precursor for structural and signaling molecules. Although perturbation of inositol homeostasis has been implicated in numerous human disorders, surprisingly little is known about how inositol levels are regulated in mammalian cells. A recent study in mouse embryonic fibroblasts demonstrated that nuclear translocation of inositol hexakisphosphate kinase 1 (IP6K1) mediates repression of myo-inositol-3-P synthase (MIPS), the rate-limiting inositol biosynthetic enzyme.

View Article and Find Full Text PDF

Pandemics are global challenges that lead to total disruption of human activities. From the inception of human existence, all pandemics have resulted in loss of human lives. The coronavirus disease caused by SAR-CoV-2 began in China and is now at the global scale with an increase in mortality and morbidity.

View Article and Find Full Text PDF

Inositol plays a significant role in cellular function and signaling. Studies in yeast have demonstrated an "inositol-less death" phenotype, suggesting that inositol is an essential metabolite. In yeast, inositol synthesis is highly regulated, and inositol levels have been shown to be a major metabolic regulator, with its abundance affecting the expression of hundreds of genes.

View Article and Find Full Text PDF

, commonly known as baker's yeast, is one of the most comprehensively studied model organisms in science. Yeast has been used to study a wide variety of human diseases, and the yeast model system has proved to be an especially amenable tool for the study of lipids and lipid-related pathophysiologies, a topic that has gained considerable attention in recent years. This review focuses on how yeast has contributed to our understanding of the mitochondrial phospholipid cardiolipin (CL) and its role in Barth syndrome (BTHS), a genetic disorder characterized by partial or complete loss of function of the CL remodeling enzyme tafazzin.

View Article and Find Full Text PDF

Infectious bronchitis (IB) and Newcastle disease (ND) are two important diseases of poultry and have remained a threat to the development of the poultry industry in many parts of the world. The immunology of avian has been well studied and numerous vaccines have been developed against the two viruses. Most of these vaccines are either inactivated vaccines or live attenuated vaccines.

View Article and Find Full Text PDF

Herpes simplex virus (HSV) infections are among the most common viral infections and usually last for a lifetime. The virus can potentially be controlled with vaccines since humans are the only known host. However, despite the development and trial of many vaccines, this has not yet been possible.

View Article and Find Full Text PDF

During infection, the bacterial pathogen manipulates a variety of host cell signaling pathways, including the Hippo pathway which controls cell proliferation and differentiation in eukaryotes. Our previous studies revealed that encodes the effector kinase LegK7 which phosphorylates MOB1A, a highly conserved scaffold protein of the Hippo pathway. Here, we show that MOB1A, in addition to being a substrate of LegK7, also functions as an allosteric activator of its kinase activity.

View Article and Find Full Text PDF