Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known to be present in sewage, and wastewater-based epidemiology has attracted much attention. However, the physical partitioning of SARS-CoV-2 in wastewater and the removal efficiency of treatment systems require further investigation. This study aimed to investigate the detectability and physical partitioning of SARS-CoV-2 in wastewater and assess its removal in a large-scale septic tank employing anaerobic, anoxic, and oxic processes in a sequential batch reactor, which was installed in a coronavirus disease 2019 (COVID-19) quarantine facility.
View Article and Find Full Text PDFPolyethylene glycol (PEG) precipitation is one of the conventional methods for virus concentration. This technique has been used to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater. The procedures and seeded surrogate viruses were different among implementers; thus, the reported whole process recovery efficiencies considerably varied among studies.
View Article and Find Full Text PDFWe recently demonstrated that the futalosine pathway was operating in some bacteria for the biosynthesis of menaquinone and that futalosine was converted into dehypoxanthinyl futalosine (DHFL) by an MqnB of Thermus thermophilus. In this study, we found that aminodeoxyfutalosine, which has adenine instead of hypoxanthine in futalosine, was directly converted into DHFL by an MqnB of Helicobacter pylori. Therefore, this step is potentially an attractive target for the development of specific anti-H.
View Article and Find Full Text PDF