Publications by authors named "Chirshev E"

Cytokine receptor-like factor 2 B-cell acute lymphoblastic leukemia (CRLF2 B-ALL) is a high-risk subtype characterized by CRLF2 overexpression with poor survival rates in children and adults. CRLF2 and interleukin-7 receptor alpha (IL-7Rα) form a receptor for the cytokine thymic stromal lymphopoietin (TSLP), which induces JAK/STAT and PI3K/AKT/mTOR pathway signals. Previous studies from our group showed that low TSLP doses increased STAT5, AKT, and S6 phosphorylation and contributed to CRLF2 B-ALL cell survival.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) does not respond to anti-estrogen and anti-HER2 therapies and is commonly treated by chemotherapy. TNBC has a high recurrence rate, particularly within the first 3 years. Thus, there is an urgent clinical need to develop more effective therapies for TNBC.

View Article and Find Full Text PDF

High-grade serous carcinoma of the ovary is a deadly gynecological cancer with poor long-term survival. Dysregulation of microRNAs has been shown to contribute to the formation of cancer stem cells (CSCs), an important part of oncogenesis and tumor progression. The family of microRNAs has previously been shown to regulate stemness and has tumor suppressive actions in a variety of cancers, including ovarian.

View Article and Find Full Text PDF

We aimed to determine the mechanism of epithelial-mesenchymal transition (EMT)-induced stemness in cancer cells. Cancer relapse and metastasis are caused by rare stem-like cells within tumors. Studies of stem cell reprogramming have linked repression and acquisition of stemness with the EMT factor, .

View Article and Find Full Text PDF
Article Synopsis
  • Patient-derived samples offer a more reliable model for studying high-grade serous ovarian cancer (HGSOC) compared to traditional cell line models, as they accurately reflect the in vivo characteristics of the disease.
  • Researchers characterized patient-derived xenograft (PDX) models, discovering that samples exhibited a hybrid of epithelial and mesenchymal traits, impacting their self-renewal and tumorigenicity.
  • A notable finding was the inverse relationship between let-7 microRNA and stemness, suggesting that lower let-7 levels correlate with greater tumorigenic potential and sensitivity to chemotherapy, while also indicating that stemness and invasiveness can be dissociated in HGSOC cells.
View Article and Find Full Text PDF

Abnormal regulation and expression of microRNAs (miRNAs) has been documented in various diseases including cancer. The miRNA let-7 (MIRLET7) family controls developmental timing and differentiation. Let-7 loss contributes to carcinogenesis via an increase in its target oncogenes and stemness factors.

View Article and Find Full Text PDF

Patients with metastatic castration-resistant prostate cancer (mCRPC) develop resistance to conventional therapies including docetaxel (DTX). Identifying molecular pathways underlying DTX resistance is critical for developing novel combinatorial therapies to prevent or reverse this resistance. To identify transcriptomic signatures associated with acquisition of chemoresistance we profiled gene expression in DTX-sensitive and -resistant mCRPC cells using RNA sequencing (RNA-seq).

View Article and Find Full Text PDF

To develop effective therapies for advanced high grade serous ovarian cancer (HGSOC), understanding mechanisms of recurrence and metastasis is necessary. In this study, we define the epithelial/mesenchymal status of cell lines that accurately model HGSOC, and evaluate the therapeutic potential of targeting Snai1 (Snail), a master regulator of the epithelial/mesenchymal transition (EMT) in vitro and in vivo. The ratio of Snail to E-cadherin (S/E index) at RNA and protein levels was correlated with mesenchymal morphology in four cell lines.

View Article and Find Full Text PDF