Publications by authors named "Chirag Badami"

Acute lung injury (ALI) and the development of the multiple organ dysfunction syndrome (MODS) are major causes of death in trauma patients. Gut inflammation and loss of gut barrier function as a consequence of splanchnic ischemia-reperfusion (I/R) have been implicated as the initial triggering events that contribute to the development of the systemic inflammatory response, ALI, and MODS. Since hypoxia-inducible factor (HIF-1) is a key regulator of the physiological and pathophysiological response to hypoxia, we asked whether HIF-1 plays a proximal role in the induction of gut injury and subsequent lung injury.

View Article and Find Full Text PDF

Background: Acute lung injury (ALI) and the development of the multiple organ dysfunction syndrome (MODS) is a major cause of death in trauma patients. Earlier studies in trauma hemorrhagic shock (T/HS) have documented that splanchnic ischemia leading to gut inflammation and loss of barrier function is an initial triggering event that leads to gut-induced ARDS and MODS. Since sex hormones have been shown to modulate the response to T/HS and proestrous (PE) females are more resistant to T/HS-induced gut and distant organ injury, the goal of our study was to determine the contribution of estrogen receptor (ER)alpha and ERbeta in modulating the protective response of female rats to T/HS-induced gut and lung injury.

View Article and Find Full Text PDF

Management of the patient who refuses blood products based on religious grounds poses ethical and clinical challenges, especially when the degree of anemia becomes life-threatening. In this report, we present the case of a 52-year-old Jehovah's Witness with sickle cell disease in whom he and his family refused blood products for the treatment of severe anemia associated with profound and progressive acidosis, acute oliguric renal failure, and hemodynamic instability. Attempts carried out during the first 3 hospital days to stabilize the patient using standard therapies to support oxygen delivery as well as the use of sedation, pain control, temperature control, neuromuscular blockade, and mechanical ventilation to reduce oxygen demand were not successful.

View Article and Find Full Text PDF

Clinical and experimental studies have shown that trauma combined with hemorrhage shock (T/HS) is associated with myocardial contractile dysfunction. However, the initial events triggering the cardiac dysfunction are not fully elucidated. Thus we tested the hypothesis that factors carried in intestinal (mesenteric) lymph contribute to negative inotropic effects in rats subjected to a laparotomy (T) plus hemorrhagic shock (HS; mean arterial blood pressure of 30-40 Torr for 90 min) using a Langendorff isolated heart preparation.

View Article and Find Full Text PDF

Background: Recognition that resuscitation with Ringers lactate (RL) potentiates trauma-hemorrhagic shock (T/HS)-induced organ injury and systemic inflammation has led to a search for improved initial fluid resuscitation regimens. However, one relatively neglected component in the search for new and novel resuscitation strategies is a determination of what fluid resuscitation therapy (i.e.

View Article and Find Full Text PDF

The goal of this study was to test the hypothesis that factors released from the gut and carried in the mesenteric lymph contribute to mortality in a lethal gut I/R model. To test this hypothesis, a lethal splanchnic artery occlusion (SAO) shock model was used in male Sprague-Dawley rats. In the first set of experiments, ligation of the mesenteric lymph duct (LDL), which prevents gut-derived factors carried in the intestinal lymphatics from reaching the systemic circulation, significantly improved 24-h survival after a 20-min SAO insult (0% vs.

View Article and Find Full Text PDF

Background: The release of injurious factors into the mesenteric lymph from the ischemic intestine has been shown to contribute to lung injury and systemic inflammation after shock and trauma. Since endotoxemia is also associated with gut injury, we tested the hypothesis that mesenteric lymph contributes to the lung injury seen in endotoxemia and that the ligation of the mesenteric lymph duct will attenuate this injury.

Methods: To test this hypothesis, male Sprague-Dawley rats were given intraperitoneal injections (i.

View Article and Find Full Text PDF

Although small animal rodent studies indicate that there is a sexual dimorphism in the resistance to organ injury after trauma-hemorrhagic shock (T/HS), confirmatory studies are largely lacking in more clinically relevant large animal species. Thus, we tested the hypothesis that castration would reduce the susceptibility of adult minipigs to gut injury and abrogate the production of biologically active intestinal (mesenteric) lymph after T/HS. The hemodynamic response to T/HS was similar between castrated and noncastrated minipigs.

View Article and Find Full Text PDF

Background: Trauma and hemorrhagic shock (T/HS) has been demonstrated to result in bone marrow (BM) suppression and the release of hematopoietic progenitor cells (HPC) into the peripheral blood in both human beings and experimental animals. HPC have also been identified in numerous end organs after T/HS and the ongoing loss of progenitor cells from the BM may play a role in posttraumatic BM suppression. We investigated the hypothesis that HPC will specifically migrate to sites of tissue trauma and that this process is exacerbated by hemorrhagic shock (HS).

View Article and Find Full Text PDF

Major burn injury results in impairment of left ventricular (LV) contractile function. There is strong evidence to support the involvement of gut-derived factor(s) transported in mesenteric lymph in the development of burn-related contractile dysfunction; i.e.

View Article and Find Full Text PDF