Physical Unclonable Functions (PUFs) address the inherent limitations of conventional hardware security solutions in edge-computing devices. Despite impressive demonstrations with silicon circuits and crossbars of oxide memristors, realizing efficient roots of trust for resource-constrained hardware remains a significant challenge. Hybrid organic electronic materials with a rich reservoir of exotic switching physics offer an attractive, inexpensive alternative to design efficient cryptographic hardware, but have not been investigated till date.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
August 2007
We present a new speech enhancement scheme for a single-microphone system to meet the demand for quality noise reduction algorithms capable of operating at a very low signal-to-noise ratio. A psychoacoustic model is incorporated into the generalized perceptual wavelet denoising method to reduce the residual noise and improve the intelligibility of speech. The proposed method is a generalized time-frequency subtraction algorithm, which advantageously exploits the wavelet multirate signal representation to preserve the critical transient information.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
June 2005
The self-organizing Maps (SOM) introduced by Kohonen implement two important operations: vector quantization (VQ) and a topology-preserving mapping. In this paper, an online self-organizing topological tree (SOTT) with faster learning is proposed. A new learning rule delivers the efficiency and topology preservation, which is superior of other structures of SOMs.
View Article and Find Full Text PDFIEEE Trans Neural Netw
January 2005
Color quantization (CQ) is an image processing task popularly used to convert true color images to palletized images for limited color display devices. To minimize the contouring artifacts introduced by the reduction of colors, a new competitive learning (CL) based scheme called the frequency sensitive self-organizing maps (FS-SOMs) is proposed to optimize the color palette design for CQ. FS-SOM harmonically blends the neighborhood adaptation of the well-known self-organizing maps (SOMs) with the neuron dependent frequency sensitive learning model, the global butterfly permutation sequence for input randomization, and the reinitialization of dead neurons to harness effective utilization of neurons.
View Article and Find Full Text PDF