Publications by authors named "Chiogna G"

Highly transient boundary conditions affect mixing of dissolved solutes in groundwater. An example of these transient boundary conditions occurs at the surface water-groundwater interface, where the water level in rivers can change rapidly due to the operation of hydropower plants, leading to a regime known as hydropeaking. Inspired by this phenomenon, this work studies at laboratory scale the effects of fluctuating surface water bodies on solute transport in aquifers.

View Article and Find Full Text PDF

Transport processes in porous media are controlled by the characteristics of the flow field which are determined by the porous material properties and the boundary conditions of the system. This work provides experimental evidence of the relation between mixing and flow field topology in porous media at the continuum scale. The setup consists of a homogeneously packed quasi-two-dimensional flow-through chamber in which transient flow conditions, dynamically controlled by two external reservoirs, impact the transport of a dissolved tracer.

View Article and Find Full Text PDF

Variable renewable energy sources display different space-time variability driving the availability of energy generated from these sources. Complementarity among variable renewable energies in time and space allows reducing the variability of power supply and helps matching the electricity demand curve. This work investigates the temporal structure of complementarity along an alpine transect in North-East Italy, considering a 100% renewable energy mix scenario composed by photovoltaic and run-of-the-river energy.

View Article and Find Full Text PDF

Heterogeneity and macroscopic anisotropy of porous media play an important role for dilution and reaction enhancement of conservative and reactive plumes. In this study, we perform numerical simulations to investigate steady-state flow and transport in three-dimensional heterogeneous porous media. We consider two macroscopic anisotropic inclusions resulting in helical flows with twisting streamlines in a three-dimensional flow-through domain.

View Article and Find Full Text PDF

Karst aquifers provide drinking water for 10% of the world's population, support agriculture, groundwater-dependent activities, and ecosystems. These aquifers are characterised by complex groundwater-flow systems, hence, they are extremely vulnerable and protecting them requires an in-depth understanding of the systems. Poor data accessibility has limited advances in karst research and realistic representation of karst processes in large-scale hydrological studies.

View Article and Find Full Text PDF

Temporomandibular joint (TMJ) disorders can be painful and cause functional limitations and bone changes. Deeper clinical knowledge of the pathologies related to the TMJ has always been hindered by the difficult identification of the causes that limit its movement. Weight-bearing magnetic resonance imaging (WBMRI) can reproduce the articular movement in orthostasis and allows the evaluation of joint movement.

View Article and Find Full Text PDF

Despite the importance of snow in alpine regions, little attention has been given to the homogenization of snow depth time series. Snow depth time series are generally characterized by high spatial heterogeneity and low correlation among the time series, and the homogenization thereof is therefore challenging. In this work, we present a comparison between two homogenization methods for mean seasonal snow depth time series available for Austria: the standard normal homogeneity test (SNHT) and HOMOP.

View Article and Find Full Text PDF

Developing effective hydrological models for streamflow generation in Alpine catchments is challenging due to the inherent complexity of the intertwined processes controlling water transfer from hillslopes to streams and along the river network. Over the past decades, studies have proposed complementing traditional hydrological information with environmental tracer data, e.g.

View Article and Find Full Text PDF

Transport of hydrophobic pollutants in rivers such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals is often facilitated by suspended sediment particles, which are typically mobilized during high discharge events. Suspended sediments thus represent a means of transport for particle related pollutants within river reaches and may represent a suitable proxy for average pollutant concentrations estimation in a river reach or catchment. In this study, multiple high discharge/turbidity events were sampled at high temporal resolution in the Globaqua River Basins Sava (Slovenia, Serbia), Adige (Italy), and Evrotas (Greece) and analysed for persistent organic pollutants such as PAHs (polycyclic aromatic hydrocarbons) or PCBs (polychlorinated biphenyls) and heavy metals.

View Article and Find Full Text PDF
Article Synopsis
  • Sustainable water basin management needs a clear understanding of river flow patterns affected by human activity.
  • Hydrological models are used to evaluate flow in ungauged areas, but developing these models can be resource-intensive, prompting decision-makers to use existing models.
  • This study found that while flow magnitude indicators are reliable at medium to high flows, other indicators like timing and duration face significant uncertainties, impacting ecological assessments, especially in areas with no prior flow data.
View Article and Find Full Text PDF

Water management in the alpine region has an important impact on streamflow. In particular, hydropower production is known to cause hydropeaking i.e.

View Article and Find Full Text PDF

Knowledge regarding the impact of tourism on the emergence of pharmaceuticals and personal care products (PPCPs) in Alpine river waters is limited and scarce. Therefore, a study on the occurrence patterns and spatiotemporal variability of 105 PPCPs in an Alpine river basin located in the Trentino-Alto Adige region (North-Eastern Italy) has been conducted. We observed that the total concentration of analyzed PPCPs was generally higher in all sampling sites during winter than in the summer.

View Article and Find Full Text PDF

This study provides a comprehensive evaluation of eight high spatial resolution gridded precipitation products in Adige Basin located in Italy within 45-47.1°N. The Adige Basin is characterized by a complex topography, and independent ground data are available from a network of 101 rain gauges during 2000-2010.

View Article and Find Full Text PDF

Plume dilution and transverse mixing can be considerably enhanced by helical flow occurring in three-dimensional heterogeneous anisotropic porous media. In this study, we perform tracer experiments in a fully three-dimensional flow-through chamber to investigate the effects of helical flow on plume spiraling and deformation, as well as on its dilution. Porous media were packed in angled stripes of materials with different grain sizes to create blocks with macroscopically anisotropic hydraulic conductivity, which caused helical flows.

View Article and Find Full Text PDF

Chemotaxis, the microorganisms autonomous motility along or against the concentration gradients of a chemical species, is an important, yet often neglected factor controlling the transport of bacteria through saturated porous media. For example, chemotactic bacteria could enhance bioremediation by directing their own motion to residual contaminants trapped in low hydraulic conductive zones of contaminated aquifers. The aim of the present work is to develop an accurate numerical scheme to model chemotaxis in saturated porous media and other advective dominating flow systems.

View Article and Find Full Text PDF

Precipitation is often the most important input data in hydrological models when simulating streamflow. The Soil and Water Assessment Tool (SWAT), a widely used hydrological model, only makes use of data from one precipitation gauge station that is nearest to the centroid of each subbasin, which is eventually corrected using the elevation band method. This leads in general to inaccurate representation of subbasin precipitation input data, particularly in catchments with complex topography.

View Article and Find Full Text PDF

A material fluid element within a porous medium experiences deformations due to the disordered spatial distribution of the Darcy scale velocity field, caused by the heterogeneity of hydraulic conductivity. A physical consequence of this heterogeneity is the presence of localized kinematical features such as straining, shearing and vorticity in the fluid element. These kinematical features will influence the shape of solute clouds and their fate.

View Article and Find Full Text PDF

Helical flow leads to deformation of solute plumes and enhances transverse mixing in porous media. We present experiments in which macroscopic helical flow is created by arranging different materials to obtain an anisotropic macroscopic permeability tensor with spatially variable orientation. The resulting helical flow entails twisting streamlines which cause a significant increase in lateral mass exchange and thus a large enhancement of plume dilution (up to 235%) compared to transport in homogenous media.

View Article and Find Full Text PDF

Quantifying the effects of multiple stressors on Alpine freshwater ecosystems is challenging, due to the lack of tailored field campaigns for the contemporaneous measurement of hydrological, chemical and ecological parameters. Conducting exhaustive field campaigns is costly and hence most of the activities so far have been performed addressing specific environmental issues. An accurate analysis of existing information is therefore useful and necessary, to identify stressors that may act in synergy and to design new field campaigns.

View Article and Find Full Text PDF

Dilution of solute plumes in groundwater strongly depends on transverse mixing. Thus, the correct parameterization of transverse dispersion is of critical importance for the quantitative description of solute transport. In this study we perform flow-through laboratory experiments to investigate the influence of transport dimensionality on transverse mixing.

View Article and Find Full Text PDF

Mixing processes significantly affect and limit contaminant transport and transformation rates in the subsurface. The correct quantification of mixing in groundwater systems must account for diffusion, local-scale dispersion and the flow variability in heterogeneous flow fields (e.g.

View Article and Find Full Text PDF

We study plumes originating from continuous sources that require a dissolved reaction partner for their degradation. The length of such plumes is typically controlled by transverse mixing. While analytical expressions have been derived for homogeneous flow fields, incomplete characterization of the hydraulic conductivity field causes uncertainty in predicting plume lengths in heterogeneous domains.

View Article and Find Full Text PDF

Flow-through experiments were carried out to investigate the role of transverse dispersion on the isotopic behavior of an organic compound during conservative and bioreactive transport in a homogeneous porous medium. Ethylbenzene was selected as model contaminant and a mixture of labeled (perdeuterated) and light isotopologues was continuously injected in a quasi two-dimensional flow-through system. We observed a significant fractionation of ethylbenzene isotopologues during conservative transport at steady state.

View Article and Find Full Text PDF