Thyroid cancer (TC) is a common endocrine malignancy with an increasing incidence worldwide. Early diagnosis is particularly important for TC patients, because it allows patients to receive treatment as early as possible. Artificial intelligence (AI) provides great advantages for complex healthcare systems by analyzing big data based on machine learning.
View Article and Find Full Text PDFAccurate and automated segmentation of breast tumors in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays a critical role in computer-aided diagnosis and treatment of breast cancer. However, this task is challenging, due to random variation in tumor sizes, shapes, appearances, and blurred boundaries of tumors caused by inherent heterogeneity of breast cancer. Moreover, the presence of ill-posed artifacts in DCE-MRI further complicate the process of tumor region annotation.
View Article and Find Full Text PDFBackground: Lymphovascular invasion (LVI) status plays an important role in treatment decision-making in rectal cancer (RC). Intravoxel incoherent motion (IVIM) imaging has been shown to detect LVI; however, making better use of IVIM data remains an important issue that needs to be discussed.
Purpose: We proposed to explore the best way to use IVIM quantitative parameters and images to construct radiomics models for the noninvasive detection of LVI in RC.
To develop and validate the predictive effects of stable ferroptosis- and pyroptosis-related features on the prognosis and immune status of breast cancer (BC). We retrieved as well as downloaded ferroptosis- and pyroptosis-related genes from the FerrDb and GeneCards databases. The minimum absolute contraction and selection operator (LASSO) algorithm in The Cancer Genome Atlas (TCGA) was used to construct a prognostic classifier combining the above two types of prognostic genes with differential expression, and the Integrated Gene Expression (GEO) dataset was used for validation.
View Article and Find Full Text PDFJ Magn Reson Imaging
March 2024
Rectal cancer (RC) accounts for approximately one-third of colorectal cancer (CRC), with death rates increasing in patients younger than 50 years old. Magnetic resonance imaging (MRI) is routinely performed for tumor evaluation. However, the semantic features from images alone remain insufficient to guide treatment decisions.
View Article and Find Full Text PDF