Background: Cocaine-induced plasticity in the nucleus accumbens shell of males occurs primarily in dopamine D receptor-expressing medium spiny neurons (D1R-MSNs), with little if any impact on dopamine D receptor-expressing medium spiny neurons (D2R-MSNs). In females, the effect of cocaine on accumbens shell D1R- and D2R-MSN neurophysiology has yet to be reported, nor have estrous cycle effects been accounted for.
Methods: We used a 5-day locomotor sensitization paradigm followed by a 10- to 14-day drug-free abstinence period.
Those with diabetes mellitus are at high-risk of developing psychiatric disorders, yet the link between hyperglycemia and alterations in motivated behavior has not been explored in detail. We characterized value-based decision-making behavior of a streptozocin-induced diabetic mouse model on a naturalistic neuroeconomic foraging paradigm called Restaurant Row. Mice made self-paced choices while on a limited time-budget accepting or rejecting reward offers as a function of cost (delays cued by tone-pitch) and subjective value (flavors), tested daily in a closed-economy system across months.
View Article and Find Full Text PDFRecent studies have implicated the ethanol metabolite, acetic acid, as neuroactive, perhaps even more so than ethanol itself. In this study, we investigated sex-specific metabolism of ethanol (1, 2, and 4 g/kg) to acetic acid in vivo to guide electrophysiology experiments in the accumbens shell (NAcSh), a key node in the mammalian reward circuit. There was a sex-dependent difference in serum acetate production, quantified via ion chromatography only at the lowest dose of ethanol (males > females).
View Article and Find Full Text PDFRecent studies have implicated the ethanol metabolite, acetic acid, as neuroactive, perhaps even more so than ethanol itself. In this study, we investigated sex-specific metabolism of ethanol (1, 2, and 4g/kg) to acetic acid to guide electrophysiology experiments in the accumbens shell (NAcSh), a key node in the mammalian reward circuit. There was a sex-dependent difference in serum acetate production, quantified via ion chromatography only at the lowest dose of ethanol (males>females).
View Article and Find Full Text PDFIntroduction: Preclinical literature, frequently utilizing rats, suggests females display a more rapid advancement of substance abuse and a greater risk of relapse following drug abstinence. In clinical populations, it is less clear as to what extent biological sex is a defining variable in the acquisition and maintenance of substance use. Even without considering environmental experiences, genetic factors are presumed to critically influence the vulnerability to addiction.
View Article and Find Full Text PDF