Hexagonal boron nitride (hBN) has a property similar to that of graphene, and it has become one of the most popular materials due to its flexible physical and chemical properties for a variety of applications, especially in nanoelectronics. Enhanced properties of hBN-based heterostructures are crucial for future electronic devices. In this work, a sheet-like hBN crystal was synthesized and transferred onto SiO/Si substrate and reduced graphene oxide (RGO)/SiO/Si substrate.
View Article and Find Full Text PDFA compact sensory platform has been fabricated using a graphene field effect transistor (GFET) to identify the biomolecules by pH sensing. The monolayer GFET is driven by an in-built top-gate for detecting the pH of the contacting buffer solution. The GFET device detects the effect of hydroxide ions on a graphite surface.
View Article and Find Full Text PDFThe present work focus on the synthesis of x% SO₄ loaded SnO₂ nanocatalyst at different percentages ( = 2.3, 4.6, 6.
View Article and Find Full Text PDFHere we reports an effective synthetic method for the preparation of N-graphene upon thermal annealing of prepared graphene oxide in the existence of ammonia. N-doped graphene oxide was analysed using different characterization techniques like X-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The nitrogen atom showed good binding with the graphene sheets, that are analysed by the X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFManipulation of ionic transport in the self-assembled polymer thin films using nanoarchitectonics approach can open the door for the development of novel electronic devices with ultrafast operation and low-power consumption. Here, we demonstrate a highly sensitive and ultrafast responsive flexible humidity sensor for human respiration monitoring. Humidity sensing behavior of the polymerbased planar devices, in which a polyethylene oxide-phosphotungstic acid (PEO-PWA) thin film is placed between an opposing inert electrodes, have been investigated by optimizing the device configuration and PWA salt concentration in the PEO matrix.
View Article and Find Full Text PDF