Publications by authors named "Chinnapaiyan Srinivasan"

Human immunodeficiency virus type-1 (HIV-1) associated comorbidities account for the majority of poor health outcomes in people living with HIV (PLWH) in the era of antiretroviral therapy. Lung-related comorbidities such as chronic obstructive pulmonary disease (COPD) and bacterial pneumonia are primarily responsible for increased morbidity and mortality in PLWH, even when compensated for smoking. Smokers and COPD patients demonstrate cilia shortening, attenuated ciliary beat frequency (CBF), dysfunctional ciliated cells along with goblet cell hyperplasia, and mucus hypersecretion.

View Article and Find Full Text PDF

microRNAs have emerged as essential regulators of health and disease, attracting significant attention from researchers across diverse disciplines. Following their identification as noncoding oligonucleotides intricately involved in post-transcriptional regulation of protein expression, extensive efforts were devoted to elucidating and validating their roles in fundamental metabolic pathways and multiple pathologies. Viral infections are significant modifiers of the host microRNAome.

View Article and Find Full Text PDF

Transforming Growth Factor Beta1 (TGF-β1) signaling is upregulated in Chronic Obstructive Pulmonary disease (COPD), smokers, and people living with HIV. Cigarette smoking and HIV are also independent risk factors for COPD. Chronic inflammation is a hallmark of COPD.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) is known to cause cellular senescence and inflammation among infected individuals. While the traditional antiretroviral therapies (ART) have allowed the once fatal infection to be managed effectively, the quality of life of HIV patients on prolonged ART use is still inferior. Most of these individuals suffer from life-threatening comorbidities like chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension (PAH), and diabetes, to name a few.

View Article and Find Full Text PDF

The continuous evolution of new viruses poses a danger to world health. Rampant outbreaks may advance to pandemic level, often straining financial and medical resources to breaking point. While vaccination remains the gold standard to prevent viral illnesses, these are mostly prophylactic and offer minimal assistance to those who have already developed viral illnesses.

View Article and Find Full Text PDF

People living with HIV (PLWH) have an elevated risk of chronic obstructive pulmonary disease (COPD) and are at a higher risk of asthma and worse outcomes. Even though the combination of antiretroviral therapy (cART) has significantly improved the life expectancy of HIV-infected patients, it still shows a higher incidence of COPD in patients as young as 40 years old. Circadian rhythms are endogenous 24 h oscillations that regulate physiological processes, including immune responses.

View Article and Find Full Text PDF

Gene editing using clustered regularly interspaced short palindromic repeats (CRISPR) targeted to HIV proviral DNA has shown excision of HIV from infected cells. However, CRISPR-based HIV excision is vulnerable to viral escape. Targeting cellular co-factors provides an attractive yet risky alternative to render viral escape irrelevant.

View Article and Find Full Text PDF

Clustered regularly interspaced palindromic repeats (CRISPR) technique plays a vital role in preclinical modelling of many respiratory diseases. Diseases such as chronic obstructive pulmonary disease (COPD), asthma, acute tracheal bronchitis, pneumonia, tuberculosis, lung cancer, and influenza infection continue to significantly impact human health. CRISPR associated (Cas) proteins, isolated from the immune system of prokaryotes, are one component of a very useful technique to manipulate gene sequences or editing and gene expression with significant implications for respiratory research in the field of molecular biology.

View Article and Find Full Text PDF
Article Synopsis
  • Circadian rhythms are controlled by both a central clock in the brain and peripheral clocks in other organs, essential for maintaining bodily functions.
  • Disruption of these circadian rhythms, especially in peripheral clocks, is linked to various diseases, particularly affecting lung conditions like COPD and asthma.
  • Non-coding RNAs are significant in regulating the molecular clock, but their specific influence on the lung's molecular clock and related diseases remains understudied.
View Article and Find Full Text PDF
Article Synopsis
  • Evolutionarily conserved molecular networks, including miRNAs, play a crucial role in regulating gene expression and function in eukaryotic genomes.
  • Dysregulation of miRNAs can lead to abnormal gene expression, contributing to various human health issues, especially in lung diseases like asthma and lung cancer.
  • This review discusses recent findings on miRNAs' roles in lung development and disease, highlighting their potential as diagnostic tools and therapeutic targets.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers achieved effective gene knockdown in normal human bronchial epithelium (NHBE) cells, which are covered in mucus, using a specific technique.
  • The method involved guanylurea functionalization, which alters the chemical properties of the gene carrier.
  • This study highlights a promising approach for targeting genes in complex environments like the lungs, which could have implications for respiratory therapies.
View Article and Find Full Text PDF

Transforming growth factor β (TGF-β), signaling induced by cigarette smoke (CS), plays an important role in the progression of airway diseases, like chronic bronchitis associated with chronic obstructive pulmonary disease (COPD), and in smokers. Chronic bronchitis is characterized by reduced mucociliary clearance (MCC). Cystic fibrosis transmembrane conductance regulator (CFTR) plays an important role in normal MCC.

View Article and Find Full Text PDF
Article Synopsis
  • Aptamers are highly specific nucleic acid or protein ligands with binding capabilities similar to antibodies, selected through a process called SELEX, and have applications in various fields, including therapy and diagnostics.
  • These molecules can bind to various targets with low dissociation constants (Kd), making them effective for a range of ligands.
  • Recent research focuses on using aptamers in the fight against HIV/AIDS, addressing not only viral control but also the non-HIV-related health issues that affect quality of life for those living with the virus.
View Article and Find Full Text PDF

The magnocellular vasopressin (AVP) and oxytocin (OT) neurones exhibit specific electrophysiological behaviour, synthesise AVP and OT peptides and secrete them into the neurohypophysial system in response to various physiological stimulations. The activity of these neurones is regulated by the very same peptides released either somato-dendritically or when applied to supraoptic nucleus (SON) preparations in vitro. The AVP and OT, secreted somato-dendritically (i.

View Article and Find Full Text PDF

Isolated supraoptic neurones generate spontaneous [Ca(2+)]i oscillations in isolated conditions. Here we report in depth analysis of the contribution of plasmalemmal ion channels (Ca(2+), Na(+)), Na(+)/Ca(2+) exchanger (NCX), intracellular Ca(2+) release channels (InsP3Rs and RyRs), Ca(2+) storage organelles, plasma membrane Ca(2+) pump and intracellular signal transduction cascades into spontaneous Ca(2+) activity. While removal of extracellular Ca(2+) or incubation with non-specific voltage-gated Ca(2+) channel (VGCC) blocker Cd(2+) suppressed the oscillations, neither Ni(2+) nor TTA-P2, the T-type VGCC blockers, had an effect.

View Article and Find Full Text PDF

Impaired mucociliary clearance (MCC) is a hallmark of acquired chronic airway diseases like chronic bronchitis associated with chronic obstructive pulmonary disease (COPD) and asthma. This manifests as microbial colonization of the lung consequently leading to recurrent respiratory infections. People living with HIV demonstrate increased incidence of these chronic airway diseases.

View Article and Find Full Text PDF

Aroclor 1254 is the commercial mixture of highly toxic environmental pollutant, polychlorinated biphenyls (PCBs). Being immensely durable, it is extensively used and widely distributed. Studies show that Aroclor 1254 causes a variety of adverse health effects through free radical generation.

View Article and Find Full Text PDF

Diethyl hexyl phthalate (DEHP) is a plasticizer, commonly used in a variety of products, including lubricants, perfumes, hairsprays and cosmetics, construction materials, wood finishers, adhesives, floorings and paints. DEHP is an endocrine disruptor and it has a continuum of influence on various organ systems in human beings and experimental animals. However, specific effects of DEHP on insulin signaling in adipose tissue are not known.

View Article and Find Full Text PDF

Diethyl hexyl phthalate (DEHP) is an endocrine disruptor, it influences various organ systems in human beings and experimental animals. DEHP reduced the serum testosterone and increased the blood glucose, estradiol, T(3) and T(4) in rats. However, the effect of DEHP on insulin signaling and glucose oxidation in skeletal muscle is not known.

View Article and Find Full Text PDF

Skeletal muscle, liver, and adipose tissue are major insulin responsive target organs that also express androgen receptor. Testosterone (T) plays a role in maintaining normal insulin sensitivity in men but its effects on insulin target tissues are not fully understood. Our previous study showed that orchidectomy impairs glucose oxidation through decreased insulin receptor (IR) mRNA expression in skeletal muscles, liver, and adipose tissue of male rat.

View Article and Find Full Text PDF

Background: Clinical and experimental data demonstrate that excess aldosterone and insulin interact at target tissues. It has been shown that increased levels of aldosterone contribute to development of insulin resistance and thus act as a risk factor for the development of type-II diabetes mellitus. However, the molecular mechanisms involved are yet to be identified.

View Article and Find Full Text PDF