Publications by authors named "Chinmay K Mukhopadhyay"

Increased iron level is detected in rat kidney and human urine in diabetic condition and implicated in associated nephropathy. However, the biological cue and mechanism of the iron accumulation remain unclear. Here we reveal that glucose increases iron uptake by promoting transferrin receptor 1 (TFRC) in kidney cells by a translational mechanism but does not alter expression of endosomal iron transporter DMT1.

View Article and Find Full Text PDF

Macrophages play a key role in maintaining systemic iron homeostasis and immunity. During pro-inflammatory stage macrophages retain iron due to the decrease of the unique iron exporter ferroportin. Increased cellular iron is sequestered in to storage protein ferritin by iron chaperone poly(rC)-binding protein 1 (PCBP1).

View Article and Find Full Text PDF

Iron (Fe) sequestration is one of the most important strategies of the host to control the growth and survival of invading pathogens. Ferritin (Ft) plays a pivotal role in the sequestration mechanism of mammalian hosts by storing Fe. Recent evidence suggests that poly(rC)-binding proteins (PCBPs) act as chaperones for loading Fe into Ft.

View Article and Find Full Text PDF

Cisplatin is an important chemotherapeutic drug for the treatment of solid tumors but often causes nephropathy as part of the off-target toxicity. Iron accumulation and related damage were implicated in cisplatin-induced kidney injury. However, the role of cisplatin in the renal iron sensing mechanism and its target genes responsible for iron uptake, storage, and release have not been investigated.

View Article and Find Full Text PDF

Background: Elevated endogenous phosphoinositide-3-kinase (PI3K) activity is critical for cell proliferation in gliomas. Iron availability is one of the essential factors for cell growth and proliferation. However, any relation between PI3K and cellular iron homeostasis has not been understood so far.

View Article and Find Full Text PDF

Recent literature suggested an important function of native amyloid precursor protein (APP) as amine oxidase implicating in protection of brain cells from catecholamine-induced toxicity. However, any role of catecholamines on regulation of native APP has not been explored. Here we report that dopamine (DA), one of the most prominent catecholamine neurotransmitters in brain, down-modulates native APP protein in several neuronal cell types.

View Article and Find Full Text PDF

Hepcidin mediated ferroportin (Fpn) degradation in macrophages is a well adopted strategy to limit iron availability towards invading pathogens. Leishmania donovani (LD), a protozoan parasite, resides within macrophage and competes with host for availing iron. Using in vitro and in vivo model of infection, we reveal that LD decreases Fpn abundance in host macrophages by hepcidin independent mechanism.

View Article and Find Full Text PDF

Micronutrients are essential for survival and growth for all the organisms including pathogens. In this manuscript, we report that zinc (Zn) chelator N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethylenediamine (TPEN) affects growth and viability of intracellular pathogen Leishmania donovani (LD) by a concentration and time dependent manner. Simultaneous addition of zinc salt reverses the effect of TPEN.

View Article and Find Full Text PDF

Lignin, one of the most abundant renewable feedstock, is used to develop a biocompatible hydrogel as anti-infective ointment. A hydrophilic polyoxazoline chain is grafted through ring opening polymerization, possess homogeneous spherical nanoparticles of 10-15 nm. The copolymer was covalently modified with triazole moiety to fortify the antimicrobial and antibiofilm activities.

View Article and Find Full Text PDF

Recently, we have reported that the conditional mutant of the heat shock factor-1 (HSF1) in Candida albicans displays enhanced susceptibility not only towards a plant alkaloid, berberine, but also to diverse antifungal drugs. The present study attempts to identify additional phenotypes highlighting the non-heat shock responsive roles of HSF1 that could be correlated with the enhanced drug susceptibility. We uncover an intricate relationship between cellular iron and HSF1 mediated drug susceptibility of C.

View Article and Find Full Text PDF

Amphotericin B and anidulafungin are widely used antifungal drugs for the treatment of systemic and serious mycoses. Amphotericin B is a relatively toxic drug which has long been established. This study is first of its kind to systematically investigate the nature of binding to DNA, and to evaluate intercalation of AMP-B or ANIDULA with the aid of UV-Vis, ITC, and CD spectroscopy.

View Article and Find Full Text PDF

Iron accumulation and oxidative stress are associated with neurodegenerative disease. Labile iron is known to catalyze free radical generation and subsequent neuronal damage, whereas the role of oxidative stress in neuronal iron accumulation is less well understood. Here, we examined the effect of hydrogen peroxide (H2O2) treatment on cellular iron-uptake, -storage, and -release proteins in the neuroblastoma cell line SH-SY5Y.

View Article and Find Full Text PDF

Adequate availability of iron is important for cellular energy metabolism. Catecholamines such as epinephrine and norepinephrine promote energy expenditure to adapt to conditions that arose due to stress. To restore the energy balance, epinephrine/norepinephrine-exposed cells may face higher iron demand.

View Article and Find Full Text PDF

Iron has emerged as a significant cause of neurotoxicity in several neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), sporadic Creutzfeldt-Jakob disease (sCJD), and others. In some cases, the underlying cause of iron mis-metabolism is known, while in others, our understanding is, at best, incomplete. Recent evidence implicating key proteins involved in the pathogenesis of AD, PD, and sCJD in cellular iron metabolism suggests that imbalance of brain iron homeostasis associated with these disorders is a direct consequence of disease pathogenesis.

View Article and Find Full Text PDF

Oxygen sensing transcription factor HIF-1 is activated due to accumulation of regulatory subunit HIF-1α by posttranslational stability mechanism during hypoxia or by several other stimuli even in normoxia. HIF-1α is also regulated by NF-kB mediated transcription mechanism. Reactive oxygen species (ROS) act as an important regulator of HIF-1 either by affecting prolyl hydroxylase activity, the critical determinant of HIF-1α stabilization or by activating NF-kB to promote HIF-1α transcription.

View Article and Find Full Text PDF

Aims: Most biomarkers used for the premortem diagnosis of sporadic Creutzfeldt-Jakob disease (CJD) are surrogate in nature, and provide suboptimal sensitivity and specificity.

Results: We report that CJD-associated brain iron dyshomeostasis is reflected in the cerebrospinal fluid (CSF), providing disease-specific diagnostic biomarkers. Analysis of 290 premortem CSF samples from confirmed cases of CJD, Alzheimer's disease, and other dementias (DMs), and 52 non-DM (ND) controls revealed a significant difference in ferroxidase (Frx) activity and transferrin (Tf) levels in sporadic Creutzfeldt-Jakob disease (sCJD) relative to other DM and ND controls.

View Article and Find Full Text PDF

Hepatic iron is known to regulate insulin signaling pathways and to influence insulin sensitivity in insulin resistance (IR) patients. However, the role of insulin on hepatic iron homeostasis remains unexplored. Here, we report that insulin promotes transferrin-bound iron uptake but shows no influence on non transferrin-bound iron uptake in human hepatic HepG2 cells.

View Article and Find Full Text PDF

Recent evidence established a crucial role for mammalian oxygen sensing transcription factor hypoxia inducible factor-1 (HIF-1) in innate immunity against intracellular pathogens. In response to most of these pathogens host phagocytes increase transcription of HIF-1α, the regulatory component of HIF-1 to express various effector molecules against invaders. Leishmania donovani (LD), a protozoan parasite and the causative agent of fatal visceral leishmaniasis resides in macrophages within mammalian host.

View Article and Find Full Text PDF

A large program was conducted by the Government of India to study the prevalence and profile of chronic hepatitis B virus (HBV) infection and its risk factors in pregnant women attending a tertiary care hospital in India. From September 2004 to December 2008 consecutive pregnant women attending the antenatal clinic were screened and those found positive for HBsAg were enrolled. Healthy non-pregnant women of child-bearing age, who presented for blood donation during the same period, served as controls.

View Article and Find Full Text PDF

Background: Imbalance of iron homeostasis has been reported in sporadic Creutzfeldt-Jakob-disease (sCJD) affected human and scrapie infected animal brains, but the contribution of this phenotype to disease associated neurotoxicity is unclear.

Methodology/principal Findings: Using cell models of familial prion disorders, we demonstrate that exposure of cells expressing normal prion protein (PrP(C)) or mutant PrP forms to a source of redox-iron induces aggregation of PrP(C) and specific mutant PrP forms. Initially this response is cytoprotective, but becomes increasingly toxic with time due to accumulation of PrP-ferritin aggregates.

View Article and Find Full Text PDF

This study shows that the morphogenic regulator EFG1 level affects the drug susceptibilities of Candida albicans when grown on solid growth media. The Deltaefg1 mutant showed sensitivity particularly to those drugs that target ergosterol or its metabolism. Efg1p disruption showed a gene-dosage effect on drug susceptibilities and resulted in enhanced susceptibility to drugs in the homozygous mutant as compared with the wild type, heterozygous and revertant strains.

View Article and Find Full Text PDF

Glutathione (GSH) depletion is often detected in chronic pathological conditions like hepatitis C infection, alcohol consumption or xenobiotic assault with simultaneous reactive oxygen species (ROS) generation and hepatic iron overload. However, relation between GSH depletion and regulators of iron homeostasis is not clear so far. To determine that hepatic HepG2 cells were treated with GSH synthesis inhibitor butathione sulfoximine (BSO) and a dual regulation of ceruloplasmin (Cp) that involves in hepatic iron release was detected unlike other iron homeostasis regulators.

View Article and Find Full Text PDF

Ceruloplasmin (Cp), a copper-containing protein, plays a significant role in body iron homeostasis as aceruloplasminemia patients and Cp knock-out mice exhibit iron overload in several tissues including liver and brain. Several other functions as oxidant, as antioxidant, and in nitric oxide metabolism are also attributed to Cp. Despite its role in iron oxidation and other biological oxidation reactions the regulation of Cp by reactive oxygen species (ROS) remains unexplored.

View Article and Find Full Text PDF

Intracellular pathogens employ several strategies for iron acquisition from host macrophages for survival and growth, whereas macrophage resists infection by actively sequestering iron. Here, we show that instead of allowing macrophage to sequester iron, protozoan parasite Leishmania donovani (LD) uses a novel strategy to manipulate iron uptake mechanisms of the host and utilizes the taken up iron for its intracellular growth. To do so, intracellular LD directly scavenges iron from labile iron pool of macrophages.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored how iron levels influence hyphal and biofilm formation in Candida albicans, highlighting that iron deprivation encourages hyphal development without hindering cell growth.
  • Certain iron-acquisition mutants also exhibited hyphal formation when deprived of iron, but this was reversed with iron supplementation, indicating the significance of iron in regulating this process.
  • The research established that the gene EFG1 is crucial for hyphal development under low iron conditions, although biofilm formation and azole resistance were unaffected by iron status.
View Article and Find Full Text PDF