Publications by authors named "Chini G"

Work-related musculoskeletal disorders (WRMSDs) are a leading cause of chronic conditions among working-age adults. Preventing these disorders is crucial to reducing their impact, and quantitative analysis through sensors can help identify their causes and guide ergonomic solutions. This systematic review aims to compile research from 2000 to 2023 published in English and sourced from Web of Science, Scopus, or PubMed that examines workers' movements during tasks using wearable sensor systems that are applicable in workplace settings.

View Article and Find Full Text PDF

Spinal cord injury (SCI) causes major challenges to mobility and daily life activities and maintaining balance becomes a crucial issue. Individuals with SCI often need to adopt new strategies to manage balance with minimal discomfort. Sports and physical activities have become one of the most popular rehabilitation methods for people with SCI.

View Article and Find Full Text PDF
Article Synopsis
  • Elite speed roller skaters find skating more physically demanding on the groin compared to other sports, which raises their injury risk.
  • Researchers studied the kinematic and electromyographic data of roller skaters on a treadmill at speeds of 20 km/h and 32 km/h, using sensors to monitor muscle activity.
  • Results showed that higher speeds require greater muscle activation and coordination, providing valuable insights for physiotherapists and kinesiologists in injury prevention and training.
View Article and Find Full Text PDF
Article Synopsis
  • Gait analysis studies in patients with primary hereditary cerebellar ataxia (pwCA) face challenges due to small sample sizes and unbalanced datasets.
  • The study aimed to evaluate how data balancing techniques and generative AI can create synthetic datasets that accurately reflect gait abnormalities in pwCA.
  • Using methods like conditional tabular generative adversarial networks (ctGAN), researchers found that ctGAN improved classification performance and provided better explainability for diagnostic models compared to traditional methods.
View Article and Find Full Text PDF

Multiple myeloma (MM) patients complain of pain and stiffness limiting motility. To determine if patients can benefit from vertebroplasty, we assessed muscle activation and co-activation before and after surgery. Five patients with MM and five healthy controls performed sitting-to-standing and lifting tasks.

View Article and Find Full Text PDF

The central nervous system (CNS) controls movements and regulates joint stiffness with muscle co-activation, but until now, few studies have examined muscle pairs during running. This study aims to investigate differences in lower limb muscle coactivation during gait at different speeds, from walking to running. Nineteen healthy runners walked and ran at speeds ranging from 0.

View Article and Find Full Text PDF

When performing lifting tasks at work, the Lifting Index () is widely used to prevent work-related low-back disorders, but it presents criticalities pertaining to measurement accuracy and precision. Wearable sensor networks, such as sensorized insoles and inertial measurement units, could improve biomechanical risk assessment by enabling the computation of an adaptive () that changes over time in relation to the actual method of carrying out lifting. This study aims to illustrate the concepts and mathematics underlying computation and compare calculations in real-time using wearable sensors and force platforms with the estimated with the standard method used by ergonomists and occupational health and safety technicians.

View Article and Find Full Text PDF

Introduction: Non-invasive ventilation (NIV) treatment combined with pronation in patients with COVID-19 respiratory failure has been shown to be effective in improving respiratory function and better patient outcomes. These patients may experience discomfort or anxiety that may reduce adherence to treatment.

Objective: The aim of this study was to explore and describe the subjective experiences of patients undergoing helmet NIV and pronation during hospitalisation for COVID-19 respiratory failure, with a focus on the elements of care and strategies adopted by patients that enabled good adaptation to treatments.

View Article and Find Full Text PDF

Low back pain (LBP) is a leading cause of disability in the workplace, often caused by manually lifting of heavy loads. Instrumental-based assessment tools are used to quantitatively assess the biomechanical risk of lifting activities. This study aims to verify that, during the execution of fatiguing frequency-dependent lifting, high-density surface electromyography (HDsEMG) allows the discrimination of healthy controls (HC) versus people with LBP and biomechanical risk levels.

View Article and Find Full Text PDF

Back support soft exosuits are promising solutions to reduce risk of musculoskeletal injuries at workplaces resulting from physically demanding and repetitive lifting tasks. Design of novel active exosuits address the impact on the muscle activity and metabolic costs but do not consider other critical aspects such as comfort and user perception during the intended tasks. Thus, in this study, we describe a novel soft active exosuit in line with its impact on physiological and subjective measures during lifting.

View Article and Find Full Text PDF

Back-support exoskeletons are commonly used in the workplace to reduce low back pain risk for workers performing demanding activities. However, for the assistance of tasks differing from lifting, back-support exoskeletons potential has not been exploited extensively. This work focuses on the use of an active back-support exoskeleton to assist carrying.

View Article and Find Full Text PDF

Collaborative Robots-CoBots-are emerging as a promising technological aid for workers. To date, most CoBots merely share their workspace or collaborate without contact, with their human partners. We claim that robots would be much more beneficial if they physically collaborated with the worker, on high payload tasks.

View Article and Find Full Text PDF

Background: Work-related low-back disorders (WLBDs) are one of the most frequent and costly musculoskeletal conditions. It has been showed that WLBDs may occur when intervertebral or torso equilibrium is altered by a biomechanical perturbations or neuromuscular control error. The capacity to react to such disturbances is heavily determined by the spinal stability, provided by active and passive tissues and controlled by the central nervous system.

View Article and Find Full Text PDF

This study aims at evaluating upper limb muscle coordination and activation in workers performing an actual use-case manual material handling (MMH). The study relies on the comparison of the workers' muscular activity while they perform the task, with and without the help of a dual-arm cobot (BAZAR). Eleven participants performed the task and the flexors and extensors muscles of the shoulder, elbow, wrist, and trunk joints were recorded using bipolar electromyography.

View Article and Find Full Text PDF

Individuals of working age affected by neuromuscular disorders frequently experience issues with their capacity to get employment, difficulty at work, and premature work interruption. Anyway, individuals with a disability could be able to return to work, thanks to targeted rehabilitation as well as ergonomic and training interventions. Biomechanical and physiological indexes are important for evaluating motor and muscle performance and determining the success of job integration initiatives.

View Article and Find Full Text PDF

Recent direct numerical simulations (DNS) and computations of exact steady solutions suggest that the heat transport in Rayleigh-Bénard convection (RBC) exhibits the classical [Formula: see text] scaling as the Rayleigh number [Formula: see text] with Prandtl number unity, consistent with Malkus-Howard's marginally stable boundary layer theory. Here, we construct conditional upper and lower bounds for heat transport in two-dimensional RBC subject to a physically motivated marginal linear-stability constraint. The upper estimate is derived using the Constantin-Doering-Hopf (CDH) variational framework for RBC with stress-free boundary conditions, while the lower estimate is developed for both stress-free and no-slip boundary conditions.

View Article and Find Full Text PDF

The acquisition of data to safeguard marine protected areas located close to ports is important in order to develop plans that allow effective protection from pollution as well as sustainable development of the port. The area Secche della Meloria is a Marine Protected Area (MPA-MEL) three miles from Livorno Harbour (LH), which is characterized by a long history of pollution. Here we studied the bioaccumulation and transcriptomic patterns of the marbled crab, Pachygrapsus marmoratus (Fabricius, 1787) (Crustacea; Brachyura, Grapsidae), inhabiting the two selected sites.

View Article and Find Full Text PDF

Occupational exoskeletons are becoming a concrete solution to mitigate work-related musculoskeletal disorders associated with manual material handling activities. The rationale behind this study is to search for common ground for exoskeleton evaluators to engage in dialogue with corporate Health & Safety professionals while integrating exoskeletons with their workers. This study suggests an innovative interpretation of the effect of a lower-back assistive exoskeleton and related performances that are built on the benefit delivered through reduced activation of the erector spinae musculature.

View Article and Find Full Text PDF

The progressive modular rebalancing (PMR) system is a comprehensive rehabilitation approach derived from proprioceptive neuromuscular facilitation principles. PMR training encourages focus on trunk and proximal muscle function through direct perception, strength, and stretching exercises and emphasizes bi-articular muscle function in the improvement of gait performance. Sensory cueing, such as visual cues (VC), is one of the more established techniques for gait rehabilitation in PD.

View Article and Find Full Text PDF

Gait disorders represent one of the most disabling features of Parkinson's disease, which may benefit from rehabilitation. No consistent evidence exists about which gait biomechanical factors can be modified by rehabilitation and which clinical characteristic can predict rehabilitation-induced improvements. The aims of the study were as follows: (i) to recognize the gait parameters modifiable by a short-term rehabilitation program; (ii) to evaluate the gait parameters that can normalize after rehabilitation; and (iii) to identify clinical variables predicting improvements in gait function after rehabilitation.

View Article and Find Full Text PDF

This article illustrates the application of multiple scales analysis to two archetypal quasi-linear systems; i.e. to systems involving fast dynamical modes, called fluctuations, that are not directly influenced by fluctuation-fluctuation nonlinearities but nevertheless are strongly coupled to a slow variable whose evolution may be fully nonlinear.

View Article and Find Full Text PDF

The aims of this study were: (i) to determine kinematic, kinetic, and electromyographic characteristics of Junzuki karate punch in professional karate athletes; (ii) to identify biomechanical parameters that correlate with punch force and lead to a higher punching performance; (iii) to verify the presence of muscle co-activation in the upper limb, trunk, and lower limb muscles. Data were collected from nine experienced karatekas from the Accademia Italiana Karate e Arti Marziali during the execution of the specific punch. Mean punch forces (181.

View Article and Find Full Text PDF

We collected the gait parameters and lower limb joint kinematics of patients with three different types of primary degenerative neurological diseases: (i) cerebellar ataxia (19 patients), (ii) hereditary spastic paraparesis (26 patients), and (iii) Parkinson's disease (32 patients). Sixty-five gender-age matched healthy subjects were enrolled as control group. An optoelectronic motion analysis system was used to measure time-distance parameters and lower limb joint kinematics during gait in both patients and healthy controls.

View Article and Find Full Text PDF

Patients with degenerative neurological diseases such as cerebellar ataxia, spastic paraplegia, and Parkinson's disease often display progressive gait function decline that inexorably impacts their autonomy and quality of life. Therefore, considering the related social and economic costs, one of the most important areas of intervention in neurorehabilitation should be the treatment of gait abnormalities. This study aims to determine whether an entire dataset of gait parameters recorded in patients with degenerative neurological diseases can be clustered into homogeneous groups distinct from each other and from healthy subjects.

View Article and Find Full Text PDF