This study investigates the effectiveness of polyaniline oxide (PANI) nanoparticles as photocatalysts for the degradation of organic dyes under visible light irradiation. Known for their stability and adjustable conductivity, PANI nanoparticles were synthesized a hydrothermal method using P123 surfactants, followed by calcination. The morphology, structural phase, and optical properties of the synthesized PANI materials were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR).
View Article and Find Full Text PDFSynthesizing novel photocatalysts that can effectively harvest photon energy over a wide range of the solar spectrum for practical applications is vital. Porphyrin-derived nanostructures with properties similar to those of chlorophyll have emerged as promising candidates to meet this requirement. In this study, tetrakis(4-carboxyphenyl) porphyrin (TCPP) nanofibers were formed on the surface of ZnO nanoparticles using a simple self-assembly approach.
View Article and Find Full Text PDFThe quest for finding an effective photocatalyst for environmental remediation and treatment strategies is attracting considerable attentions from scientists. In this study, a new hybrid material, CuMgFeO-TiO, was designed and fabricated using coprecipitation and sol-gel approaches for degrading organic dyes in wastewater. The prepared hybrid materials were fully characterized using scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFMetal oxides and their composites have been extensively studied as effective adsorbents for the removal of heavy metals from aqueous solutions in environmental remediation. In this work, CuMgFeO was synthesized by a co-precipitation method followed by calcination (900 °C) and investigated for Pb(II) adsorption. The resultant samples were characterized by various analytical techniques including X-ray diffraction, N adsorption-desorption, scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy.
View Article and Find Full Text PDFDirect-acting antiviral inhibitors have revolutionized the treatment of hepatitis C virus (HCV) infected patients. Herein is described the discovery of velpatasvir (VEL, GS-5816), a potent pan-genotypic HCV NS5A inhibitor that is a component of the only approved pan-genotypic single-tablet regimens (STRs) for the cure of HCV infection. VEL combined with sofosbuvir (SOF) is Epclusa, an STR with 98% cure-rates for genotype 1-6 HCV infected patients.
View Article and Find Full Text PDFTreatment of hepatitis C virus (HCV) infection has been historically challenging due the high viral genetic complexity wherein there are eight distinct genotypes and at least 86 viral subtypes. While HCV NS3/4A protease inhibitors are an established treatment option for genotype 1 infection, limited coverage of genotypes 2 and/or 3 combined with serum alanine transaminase (ALT) elevations for some compounds has limited the broad utility of this therapeutic class. Our discovery efforts were focused on identifying an NS3/4A protease inhibitor with pan-genotypic antiviral activity, improved coverage of resistance associated substitutions, and a decreased risk of hepatotoxicity.
View Article and Find Full Text PDFA novel series of non-nucleoside small molecules containing a tricyclic dihydropyridinone structural motif was identified as potent HCV NS5B polymerase inhibitors. Driven by structure-based design and building on our previous efforts in related series of molecules, we undertook extensive SAR studies, in which we identified a number of metabolically stable and very potent compounds in genotype 1a and 1b replicon assays. This work culminated in the discovery of several inhibitors, which combined potent in vitro antiviral activity against both 1a and 1b genotypes, metabolic stability, good oral bioavailability, and high C(12) (PO)/EC(50) ratios.
View Article and Find Full Text PDFThe discovery of 5,5'- and 6,6'-dialkyl-5,6-dihydro-1H-pyridin-2-ones as potent inhibitors of the HCV RNA-dependent RNA polymerase (NS5B) is described. Several of these agents also display potent antiviral activity in cell culture experiments (EC50 <0.10 microM).
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2009
5,6-Dihydro-1H-pyridin-2-one analogs were discovered as a novel class of inhibitors of genotype 1 HCV NS5B polymerase. Among these, compound 4ad displayed potent inhibitory activities in biochemical and replicon assays (IC(50) (1b)<10nM; IC(50) (1a)<25nM, EC(50) (1b)=16nM), good in vitro DMPK properties, as well as moderate oral bioavailability in monkeys (F=24%).
View Article and Find Full Text PDFThe synthesis of 4-(1',1'-dioxo-1',4'-dihydro-1'lambda(6)-benzo[1',2',4']thiadiazin-3'-yl)-5-hydroxy-2H-pyridazin-3-ones bearing 6-amino substituents as potent inhibitors of the HCV RNA-dependent RNA polymerase (NS5B) is described. Several of these agents also display potent antiviral activity in cell culture experiments (EC(50)<0.10 microM).
View Article and Find Full Text PDF4-(1,1-Dioxo-1,4-dihydro-1lambda(6)-benzo[1,4]thiazin-3-yl)-5-hydroxy-2H-pyridazin-3-one analogs were discovered as a novel class of inhibitors of HCV NS5B polymerase. Structure-based design led to the identification of compound 3a that displayed potent inhibitory activities in biochemical and replicon assays (1b IC(50)<10 nM; 1b EC(50)=1.1 nM) as well as good stability toward human liver microsomes (HLM t(1/2)>60 min).
View Article and Find Full Text PDFA novel series of HCV NS5B polymerase inhibitors comprising 1,1-dioxoisothiazoles and benzo[b]thiophene-1,1-dioxides were designed, synthesized, and evaluated. SAR studies guided by structure-based design led to the identification of a number of potent NS5B inhibitors with nanomolar IC(50) values. The most potent compound exhibited IC(50) less than 10nM against the genotype 1b HCV polymerase and EC(50) of 70 nM against a genotype 1b replicon in cell culture.
View Article and Find Full Text PDFPyrrolo[1,2-b]pyridazin-2-one analogs were discovered as a novel class of inhibitors of genotype 1 HCV NS5B polymerase. Structure-based design led to the discovery of compound 3 k, which displayed potent inhibitory activities in biochemical and replicon assays (IC(50) (1b)<10nM; EC(50) (1b)=12 nM) as well as good stability towards human liver microsomes (HLM t(1/2)>60 min).
View Article and Find Full Text PDF5-Hydroxy-3(2H)-pyridazinone derivatives were investigated as inhibitors of genotype 1 HCV NS5B polymerase. Lead optimization led to the discovery of compound 3a, which displayed potent inhibitory activities in biochemical and replicon assays [IC(50) (1b)<10nM; IC(50) (1a)=22 nM; EC(50) (1b)=5nM], good stability toward human liver microsomes (HLM t(1/2)>60 min), and high ratios of liver to plasma concentrations 12h after a single oral administration to rats.
View Article and Find Full Text PDF5-Hydroxy-3(2H)-pyridazinone derivatives were investigated as inhibitors of genotype 1 HCV NS5B polymerase. The synthesis, structure-activity relationships (SAR), metabolic stability, and structure-based design approach for this new class of compounds are discussed.
View Article and Find Full Text PDF5-Hydroxy-3(2H)-pyridazinone derivatives were investigated as inhibitors of genotype 1 HCV NS5B polymerase. The structure-activity relationship (SAR) associated with variation of the pyridazinone 2- and 6-substituents is discussed. The synthesis and metabolic stability of this new class of compounds are also described.
View Article and Find Full Text PDF