Publications by authors named "Chingyi Nam"

Investigation on long-term effects of robot-assisted poststroke rehabilitation is challenging because of the difficulties in administration and follow-up of individuals throughout the process. A mobile hybrid neuromuscular electrical stimulation (NMES)-robot, i.e.

View Article and Find Full Text PDF

Rehabilitation robots are helpful in poststroke telerehabilitation; however, their feasibility and rehabilitation effectiveness in clinical settings have not been sufficiently investigated. A non-randomized controlled trial was conducted to investigate the feasibility of translating a telerehabilitation program assisted by a mobile wrist/hand exoneuromusculoskeleton (WH-ENMS) into routine clinical services and to compare the rehabilitative effects achieved in the hospital-service-based group ( = 12, clinic group) with the laboratory-research-based group ( = 12, lab group). Both groups showed significant improvements ( ≤ 0.

View Article and Find Full Text PDF

The central-to-peripheral voluntary motor effort (VME) in the affected limb is a dominant force for driving the functional neuroplasticity on motor restoration post-stroke. However, current rehabilitation robots isolated the central and peripheral involvements in the control design, resulting in limited rehabilitation effectiveness. This study was to design a corticomuscular coherence (CMC) and electromyography (EMG)-driven control to integrate the central and peripheral VMEs in neuromuscular systems in stroke survivors.

View Article and Find Full Text PDF

Background: Most stroke survivors have sustained upper limb impairment in their distal joints. An electromyography (EMG)-driven wrist/hand exoneuromusculoskeleton (WH-ENMS) was developed previously. The present study investigated the feasibility of a home-based self-help telerehabilitation program assisted by the aforementioned EMG-driven WH-ENMS and its rehabilitation effects after stroke.

View Article and Find Full Text PDF

Surface electromyography (sEMG) based robot-assisted rehabilitation systems have been adopted for chronic stroke survivors to regain upper limb motor function. However, the evaluation of rehabilitation effects during robot-assisted intervention relies on traditional manual assessments. This study aimed to develop a novel sEMG data-driven model for automated assessment.

View Article and Find Full Text PDF

This article presents a novel electromyography (EMG)-driven exoneuromusculoskeleton that integrates the neuromuscular electrical stimulation (NMES), soft pneumatic muscle, and exoskeleton techniques, for self-help upper limb training after stroke. The developed system can assist the elbow, wrist, and fingers to perform sequential arm reaching and withdrawing tasks under voluntary effort control through EMG, with a lightweight, compact, and low-power requirement design. The pressure/torque transmission properties of the designed musculoskeletons were quantified, and the assistive capability of the developed system was evaluated on patients with chronic stroke ( = 10).

View Article and Find Full Text PDF

Background: Different mechanical supporting strategies to the joints in the upper extremity (UE) may lead to varied rehabilitative effects after stroke. This study compared the rehabilitation effectiveness achieved by electromyography (EMG)-driven neuromuscular electrical stimulation (NMES)-robotic systems when supporting to the distal fingers and to the proximal (wrist-elbow) joints.

Methods: Thirty subjects with chronic stroke were randomly assigned to receive motor trainings with NMES-robotic support to the finger joints (hand group, n = 15) and with support to the wrist-elbow joints (sleeve group, n = 15).

View Article and Find Full Text PDF

Background: Impaired hand dexterity is a major disability of the upper limb after stroke. An electromyography (EMG)-driven neuromuscular electrical stimulation (NMES) robotic hand was designed previously, whereas its rehabilitation effects were not investigated.

Objectives: This study aims to investigate the rehabilitation effectiveness of the EMG-driven NMES-robotic hand-assisted upper-limb training on persons with chronic stroke.

View Article and Find Full Text PDF