Publications by authors named "Ching-Yao Chen"

Background & Problem: The provision by nurses of effective swallowing assessments and eating safety guidance improves eating safety in the elderly. The authors of this study found that elderly clients experienced a high proportion of aspiration pneumonia after choking episodes and that the rate of implementation of eating safety guidance among these clients by nursing staff was only 64.6%.

View Article and Find Full Text PDF

Background Bleeding and thromboembolism prevention is important in patients with nonvalvular atrial fibrillation receiving anticoagulants, including direct oral anticoagulants and warfarin. Asians have higher risks of bleeding complications when taking anticoagulants. However, evidence that considers laboratory parameters is lacking.

View Article and Find Full Text PDF

Purpose: Chemotherapy-induced nausea and vomiting (CINV) commonly occurs after chemotherapy, adversely affecting patients' quality of life. Recently, studies have shown inconsistent antiemetic effects of two common 5-hydroxytryptamine 3 receptor antagonists, namely, palonosetron and granisetron. Therefore, we conducted a meta-analysis to evaluate the effectiveness of palonosetron versus granisetron in preventing CINV.

View Article and Find Full Text PDF

Rotating fluid flows under two-dimensional homogeneous porous media conditions (or in a rotating Hele-Shaw cell) reveal the development of complex interfacial fingering patterns. These pattern-forming structures are characterized by the occurrence of finger competition events, finger pinch-off episodes, as well as by the production of satellite droplets. In this work, we use intensive numerical simulations to investigate how these fully nonlinear pattern growth phenomena are altered by the presence of permeability heterogeneities in the rotating porous medium.

View Article and Find Full Text PDF

Superparamagnetic micro-bead chains and microswimmers under the influence of an oscillating magnetic field are studied experimentally and numerically. The numerical scheme composed of the lattice Boltzmann method, immersed boundary method, and discrete particle method based on the simplified Stokesian dynamics is applied to thoroughly understand the interaction between the micro-bead chain (or swimmer), the oscillating magnetic field, and the hydrodynamics drag. The systematic experiments and simulations demonstrated the behaviors of the microchains and microswimmers as well as the propulsive efficiencies of the swimmers.

View Article and Find Full Text PDF

Mixing at low Reynolds numbers, especially in the framework of confined flows occurring in Hele-Shaw cells, porous media, and microfluidic devices, has attracted considerable attention lately. Under such circumstances, enhanced mixing is limited due to the lack of turbulence, and absence of sizable inertial effects. Recent studies, performed in rectangular Hele-Shaw cells, have demonstrated that the combined action of viscous fluid fingering and alternating injection can dramatically improve mixing efficiency.

View Article and Find Full Text PDF

We study the development of intricate, fully nonlinear immiscible interfacial patterns in the suction-driven radial Hele-Shaw problem. The complex-shaped, contracting fluid-fluid interface arises when an initially circular blob of more viscous fluid, surrounded by less viscous one, is drawn into an eccentric point sink. We present sophisticated numerical simulations, based on a diffuse interface model, that capture the most prominent interfacial features revealed by existing experimental studies of the problem.

View Article and Find Full Text PDF

When two fluids of different densities move in a rotating Hele-Shaw cell, the interface between them becomes centrifugally unstable and deforms. Depending on the viscosity contrast of the system, distinct types of complex patterns arise at the fluid-fluid boundary. Deformations can also induce the emergence of interfacial singularities and topological changes such as droplet pinch-off and self-intersection.

View Article and Find Full Text PDF

Enterovirus 71 (EV71) has recently emerged as an important neurotropic virus in Asia because effective medications and prophylactic vaccine against EV71 infection are not available. Based on the success of inactivated poliovirus vaccine, the Vero cell-based chemically inactivated EV71 vaccine candidate could be developed. Identification of EV71 vaccine strain which can grow to high titer in Vero cell and induce cross-genotype virus neutralizing antibody responses represents the first step in vaccine development.

View Article and Find Full Text PDF

We report an experimental study of a fingering pattern formation which occurs during the spreading of an immiscible thin ferrofluid drop subjected to a radial magnetic field. Our results indicate that this ferrohydrodynamic system works as a magnetic analog of conventional spin coating, where centrifugal driving is replaced with a magnetic body force induced by the radial applied field. In this context, a magnetically tunable pattern selection mechanism is proposed in which the shape and number of the arising fingered structures can be properly controlled.

View Article and Find Full Text PDF

Injection-driven immiscible flow in radial Hele-Shaw cells results in highly ramified patterns if the injection rate is constant in time. Likewise, time-dependent gap immiscible flow in lifting Hele-Shaw cells leads to intricate morphologies if the cell's gap width grows exponentially with time. Recent studies show that the rising of these complex fingered structures can be controlled by properly adjusting the injection rate, and the time-dependent gap width.

View Article and Find Full Text PDF

Pattern formation in a miscible ferrofluid system is experimentally investigated. The experiment is performed by immersing a thin ferrofluid droplet in a cylindrical container, overfilling it with a nonmagnetic miscible fluid, and applying an in-plane radial magnetic field. Visually striking patterns are obtained whose morphologies change from circular at zero field to complex starburst-like structures at finite field.

View Article and Find Full Text PDF

A modified version of the usual viscous fingering problem in a radial Hele-Shaw cell with immiscible fluids is studied by intensive numerical simulations. We consider the situation in which the fluids involved are miscible, so that the diffusing interface separating them can be driven unstable through the injection or suction of the inner fluid. The system is allowed to rotate in such a way that centrifugal and Coriolis forces come into play, imposing important changes on the morphology of the arising patterns.

View Article and Find Full Text PDF

We present an experimental study of a different pattern-forming instability occurring when a ferrofluid droplet is immersed in a thin layer of a nonmagnetic fluid, and subjected to a uniform perpendicular magnetic field. The formation of intriguing interfacial structures is observed, and the development of a hybrid-type ferrohydrodynamic instability is verified, where peak and labyrinthine ferrofluid patterns coexist and share a coupled dynamic evolution. Based on our experimental findings we have identified the occurrence of three well defined regimes for the evolution of the miscible Rosensweig peak in which it first grows rapidly, and then gradually decays, to ultimately reimmerse into the surrounding nonmagnetic solvent layer.

View Article and Find Full Text PDF

Miscible flow displacements of a ferrofluid droplet subjected to various magnetic field configurations and confined in a time-dependent gap Hele-Shaw cell are examined through highly accurate numerical simulations. The interplay between lifting, miscibility, and applied magnetic fields resulted in complex interfacial pattern formation. By varying the symmetry properties of the applied magnetic fields and by considering the action of Korteweg stresses, a number of interesting droplet morphologies are identified and characterized.

View Article and Find Full Text PDF

The dynamics of the diffusing interface separating two miscible fluids in a rotating Hele-Shaw cell is studied by intensive and highly accurate numerical simulations. We perform numerical experiments in a wide range of parameters, focusing on the influence of viscosity contrast and Korteweg stresses on the shape of the interfacial patterns. A great variety of morphological behaviors is systematically introduced, and a wealth of interesting phenomena related to finger competition dynamics, filament stretching, and interface pinch off are reveal.

View Article and Find Full Text PDF

We perform a detailed numerical study of the evolution of a miscible fluid droplet in a time-dependent gap Hele-Shaw cell. The development of the emerging fingering instabilities is systematically analyzed by intensive and highly accurate numerical simulations. We focus on the influence of three relevant physical parameters on the interface dynamics: the Pélclet number Pe, the viscosity contrast A, and the Korteweg stress parameter delta.

View Article and Find Full Text PDF