Twisted bilayer graphene (TBG) can host the moiré energy flat bands with twofold degeneracy serving as a fruitful playground for strong correlations and topological phases. However, the number of degeneracy is not limited to two. Introducing a spatially alternative magnetic field, we report that the induced magnetic phase becomes an additional controllable parameter and leads to an undiscovered generation of fourfold degenerate flat bands.
View Article and Find Full Text PDFGraphene, with its two linearly dispersing Dirac points with opposite windings, is the minimal topological nodal configuration in the hexagonal Brillouin zone. Topological semimetals with higher-order nodes beyond the Dirac points have recently attracted considerable interest due to their rich chiral physics and their potential for the design of next-generation integrated devices. Here we report the experimental realization of the topological semimetal with quadratic nodes in a photonic microring lattice.
View Article and Find Full Text PDFA Yu-Shiba-Rusinov (YSR) state is a localized in-gap state induced by a magnetic impurity in a superconductor. Recent experiments used an STM tip to manipulate the exchange coupling between an Fe adatom and the FeTe_{0.55}Se_{0.
View Article and Find Full Text PDFMajorana zero modes (MZMs) obey non-Abelian statistics and are considered building blocks for constructing topological qubits. Iron-based superconductors with topological bandstructures have emerged as promising hosting materials, because isolated candidate MZMs in the quantum limit have been observed inside the topological vortex cores. However, these materials suffer from issues related to alloying induced disorder, uncontrolled vortex lattices and a low yield of topological vortices.
View Article and Find Full Text PDFTuning interactions between Dirac states in graphene has attracted enormous interest because it can modify the electronic spectrum of the 2D material, enhance electron correlations, and give rise to novel condensed-matter phases such as superconductors, Mott insulators, Wigner crystals, and quantum anomalous Hall insulators. Previous works predominantly focus on the flat band dispersion of coupled Dirac states from different twisted graphene layers. In this work, a new route to realizing flat band physics in monolayer graphene under a periodic modulation from substrates is proposed.
View Article and Find Full Text PDFThe fermion doubling theorem plays a pivotal role in Hermitian topological materials. It states, for example, that Weyl points must come in pairs in three-dimensional semimetals. Here, we present an extension of the doubling theorem to non-Hermitian lattice Hamiltonians.
View Article and Find Full Text PDFTopological nodal line semimetals host stable chained, linked, or knotted line degeneracies in momentum space protected by symmetries. In this Letter, we use the Jones polynomial as a general topological invariant to capture the global knot topology of the oriented nodal lines. We show that every possible change in Jones polynomial is attributed to the local evolutions around every point where two nodal lines touch.
View Article and Find Full Text PDFThe iron-based superconductor FeTe Se is one of the material candidates hosting Majorana vortex modes residing in the vortex cores. It has been observed by recent scanning tunneling spectroscopy measurement that the fraction of vortex cores having zero-bias peaks decreases with increasing magnetic field on the surface of FeTe Se . The hybridization of two Majorana vortex modes cannot simply explain this phenomenon.
View Article and Find Full Text PDFTwo-dimensional (2D) Dirac-like electron gases have attracted tremendous research interest ever since the discovery of free-standing graphene. The linear energy dispersion and nontrivial Berry phase play a pivotal role in the electronic, optical, mechanical, and chemical properties of 2D Dirac materials. The known 2D Dirac materials are gapless only within certain approximations, for example, in the absence of spin-orbit coupling (SOC).
View Article and Find Full Text PDFWe study a vortex chain in a thin film of a topological insulator with proximity-induced superconductivity-a promising platform to realize Majorana zero modes (MZMs)-by modeling it as a two-leg Majorana ladder. While each pair of MZMs hybridizes through vortex tunneling, we hereby show that MZMs can be stabilized on the ends of the ladder with the presence of tilted external magnetic field and four-Majorana interaction. Furthermore, a fruitful phase diagram is obtained by controlling the direction of magnetic field and the thickness of the sample.
View Article and Find Full Text PDFTopological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling.
View Article and Find Full Text PDFIt has been shown that doped topological insulators, up to a certain level of doping, still preserve some topological signatures of the insulating phase such as axionic electromagnetic response and the presence of a Majorana mode in the vortices of a superconducting phase. Multiple topological insulators such as HgTe, ScPtBi, and other ternary Heusler compounds have been identified and generically feature the presence of a topologically trivial band between the two topological bands. In this Letter we show that the presence of such a trivial band can stabilize the topological signature over a much wider range of doping.
View Article and Find Full Text PDF