It has been more than three decades since the discovery of multifunctional factors, the Non-POU-Domain-Containing Octamer-Binding Protein, NonO, and the Splicing Factor Proline- and Glutamine-Rich, SFPQ. Some of their functions, including their participation in transcriptional and posttranscriptional regulation as well as their contribution to paraspeckle subnuclear body organization, have been well documented. In this review, we focus on several other established roles of NonO and SFPQ, including their participation in the cell cycle, nonhomologous end-joining (NHEJ), homologous recombination (HR), telomere stability, childhood birth defects and cancer.
View Article and Find Full Text PDFAccurate spatial and temporal regulation of cell cycle progression is essential for cell proliferation and organismic development. This review demonstrates the role of microspherule protein 58kD, commonly known as MCRS1, as a key cell cycle regulator of higher eukaryotic organisms. We discuss the isoforms and functional domains of MCRS1 as well as their subcellular localization at specific stages of the cell cycle.
View Article and Find Full Text PDFIn this study we take a closer look at the diseases that afflicted Japanese police officers who were stationed in a remote mountainous region of Taiwan from 1921 to 1944. Samples were taken from the latrine at the Huabanuo police outpost, and analyzed for the eggs of intestinal parasites, using microscopy and ELISA. The eggs of Eurytrema sp.
View Article and Find Full Text PDFAccurate partitioning of chromosomes during mitosis is essential for genetic stability and requires the assembly of the dynamic mitotic spindle and proper kinetochore-microtubule attachment. The spindle assembly checkpoint (SAC) monitors the incompleteness and errors in kinetochore-microtubule attachment and delays anaphase. The SAC kinase Mps1 regulates the recruitment of downstream effectors to unattached kinetochores.
View Article and Find Full Text PDFWhile cellular senescence is a critical mechanism to prevent malignant transformation of potentially mutated cells, persistence of senescent cells can also promote cancer and aging phenotypes. NonO/p54nrb and PSF are multifunctional hnRNPs typically found as a complex exclusively within the nuclei of all mammalian cells. We demonstrate here that either increase or reduction of expression of either factor results in cellular senescence.
View Article and Find Full Text PDFHuman splicing factor SF3a is a component of the mature U2 small nuclear ribonucleoprotein particle (snRNP) and its three subunits of 60, 66, and 120 kDa are essential for splicing in vitro and in vivo. The SF3a heterotrimer forms in the cytoplasm and enters the nucleus independently of the U2 snRNP. Here, we have analyzed domains required for in vitro interactions between the SF3a subunits.
View Article and Find Full Text PDFThe oncogenic fusion tyrosine kinase nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) induces cellular transformation in anaplastic large-cell lymphomas (ALCLs) carrying the t(2;5) chromosomal translocation. Protein-protein interactions involving NPM/ALK are important for the activation of downstream signaling pathways. This study was aimed at identifying novel NPM/ALK-binding proteins that might contribute to its oncogenic transformation.
View Article and Find Full Text PDFPSF (PTB-associated splicing factor) is a multi-functional protein that participates in transcription and RNA processing. While phosphorylation of PSF has been shown to be important for some functions, the sites and the kinases involved are not well understood. Although PSF does not contain a typical RS domain, we report here that PSF is phosphorylated in vivo to generate an epitope(s) that can be recognized by a monoclonal antibody specific for phosphorylated RS motifs within SR proteins.
View Article and Find Full Text PDFThe first 57 bp upstream of the transcription initiation site of the human CYP17 (hCYP17) gene are essential for both basal and cAMP-dependent transcription. EMSA carried out by incubating H295R adrenocortical cell nuclear extracts with radiolabeled -57/-38 probe from the hCYP17 promoter showed the formation of three DNA-protein complexes. The fastest complex contained steroidogenic factor (SF-1) and p54(nrb)/NonO, the intermediate complex contained p54(nrb)/NonO and polypyrimidine tract-binding protein-associated splicing factor (PSF), and the slowest complex contained an SF-1/PSF/p54(nrb)/NonO complex.
View Article and Find Full Text PDF