A dual-anode consists of stainless steel and TiO/Ti electrodes is used to study the kinetics of the degradation of hazardous chemicals exemplified by azo dye orange G (OG) using a coupling photoelectrochemical catalytic and photoelectro-Fenton (PEC/PEF) system. Concurrent generation of hydroxyl radicals on the TiO/Ti photocatalyst and in-situ generation of Fenton reagents on the stainless steel electrode greatly enhances the performance of the PEC/PEF electrodes over that of the PEC and the PEF alone process. The efficiency of the PEC/PEF process is a function of Fe and HO concentration OH⋅ in the solution bulk, which promotes the oxidative degradation of OG and its byproducts.
View Article and Find Full Text PDFThis work demonstrates the improved stability of zinc oxide nanorods (ZnO NRs) for the photoanode of solar water splitting under voltage biases by the addition of borate or carbonate ions in the aqueous electrolyte with suitable pH ranges. The ZnO NRs prepared by the hydrothermal method are highly active and stable at pH 10.5 in both borate and carbonate buffer solutions, where a photocurrent higher than 99% of the initial value has been preserved after 1 h polarization at 1.
View Article and Find Full Text PDF