Publications by authors named "Ching-Chyuan Hsieh"

Insulin/IGF-1 signaling involves phosphorylation/dephosphorylation of serine/threonine or tyrosine residues of the insulin receptor substrate (IRS) proteins and is associated with hormonal control of longevity determination of certain long-lived mice. The stimulation of serine phosphorylations by IGF-1 suggests there is insulin/IGF-1 crosstalk that involves the phosphorylation of the same serine residues. By this mechanism, insulin and IGF-1 mediated phosphorylation of specific IRS-1 serines could play a role in longevity determination.

View Article and Find Full Text PDF

Activation of p38 MAPK by ROS involves dissociation of an inactive, reduced thioredoxin-ASK1 complex [(SH)(2)Trx-ASK1]. Release of ASK1 activates its kinase activity thus stimulating the p38 MAPK pathway. The level of p38 MAPK activity is, therefore, regulated by the balance of free vs.

View Article and Find Full Text PDF

We have proposed that the age-associated increase of reactive oxygen species (ROS) by electron transport chain (ETC) dysfunction may cause the elevated basal level of p38 MAPK stress response pathway activity. However, the mechanism by which ROS activates this pathway is not clear. Here we propose that activation of the p38 MAPK pathway by complex I (CI) generated ROS, in response to rotenone (ROT) treatment, is based on the ability of reduced Trx to bind to and inhibit ASK 1 and its release from the complex upon oxidation.

View Article and Find Full Text PDF

The insulin/IGF-1/GH and p38 MAPK signaling pathways play a key role in the regulation of protein synthesis. The regulation of GH and TSH secretion hormones, that affect the activity of these pathways, plays an important role in the decline of rates of protein synthesis in aged rodent tissues. Studies have indicated that longevity of the Snell dwarf (Pit-1) mouse mutant is associated with the reduction of function of the insulin/IGF-1/GH signaling pathway.

View Article and Find Full Text PDF

Several single gene mutations in mice that increase the murine life span have been identified, including the Pit-1 mutation which results in the Snell dwarf (Pit1(dw/dw)), however, the biological mechanism of this life-span extension is still unclear. Based on studies that show oxidative stress plays an important role in the aging process, we hypothesized that the increased longevity seen in Snell dwarf mice may result from a resistance to oxidative stress. We report that Snell dwarf mice respond to oxidative stress induced by 3-NPA differently than their wild type littermates.

View Article and Find Full Text PDF

Mitochondrial dysfunction has been identified as a major source of oxidative stress in aged tissues. In this study we asked whether activities of components of the SAPK/JNK and p38 MAPK stress response signaling pathways are indicative of oxidative stress in aged mouse livers and whether these pathways are responsive to oxidative stress generated by 3-nitropropionic acid (3-NPA), an inhibitor of complex II (succinic dehydrogenase). We asked whether (a) aging affects the basal activity of the SAPK/JNK stress signaling pathway; (b) specific isoforms of JNK, i.

View Article and Find Full Text PDF

Since mitochondrial dysfunction is a major source of oxidative stress in aged tissues, we asked whether the basal activities of stress response signaling pathway(s) are indicative of oxidative stress in aged tissues. To address this issue we asked whether: (a). aging affects the basal activity of the p38 MAPK stress signaling pathway; (b).

View Article and Find Full Text PDF

Mutations in Caenorhabditis elegans and mice have identified candidate genes that increase their lifespan via hormonal signal transduction, i.e. the insulin/IGF-1-like pathway.

View Article and Find Full Text PDF

Mutation analyses in the nematode, Caenorhabditis elegans, and mice have identified genes that increase their life-span via hormonal signal transduction, i.e. the insulin/insulin-like growth factor-1 (IGF-1) pathway in nematodes, and the growth hormone (GH)-thyriod stimulating hormone (TSH)-prolactin system in Snell dwarf mouse mutants.

View Article and Find Full Text PDF