Publications by authors named "Ching Thai"

When highly purified cannabidiol (CBD; Epidiolex) and the mammalian target of rapamycin inhibitor everolimus are used concomitantly in the treatment of tuberous sclerosis complex, there is evidence of a pharmacokinetic (PK) interaction, leading to increased everolimus systemic exposure. We evaluated the effect of steady-state CBD exposure following multiple clinically relevant CBD doses on everolimus PK in healthy adult participants in a single-center, fixed-sequence, open-label, phase 1 study. All participants received oral everolimus 5 mg on day 1, followed by a 7-day washout.

View Article and Find Full Text PDF

This pharmacokinetic (PK) drug-interaction trial investigated the effects of repeated dosing of a plant-derived pharmaceutical formulation of highly purified cannabidiol (CBD; Epidiolex in the United States and Epidyolex in Europe; 100 mg/mL oral solution) on caffeine clearance via modulation of cytochrome P450 (CYP) 1A2 activity in healthy adults. In this phase 1 open-label, fixed-sequence trial, all subjects received a single 200 mg caffeine dose and placebo on day 1. Subjects then titrated CBD from 250 mg once daily to 750 mg twice daily between days 3 and 11 and took 750 mg CBD twice daily between days 12 and 27.

View Article and Find Full Text PDF

1. We have previously described C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-one derivatives as cell permeable inhibitors of the KDM4 and KDM5 subfamilies of JmjC histone lysine demethylases. 2.

View Article and Find Full Text PDF

The Mediator complex-associated cyclin-dependent kinase CDK8 has been implicated in human disease, particularly in colorectal cancer where it has been reported as a putative oncogene. Here we report the discovery of 109 (CCT251921), a potent, selective, and orally bioavailable inhibitor of CDK8 with equipotent affinity for CDK19. We describe a structure-based design approach leading to the discovery of a 3,4,5-trisubstituted-2-aminopyridine series and present the application of physicochemical property analyses to successfully reduce in vivo metabolic clearance, minimize transporter-mediated biliary elimination while maintaining acceptable aqueous solubility.

View Article and Find Full Text PDF

We report the discovery of N-substituted 4-(pyridin-2-yl)thiazole-2-amine derivatives and their subsequent optimization, guided by structure-based design, to give 8-(1H-pyrazol-3-yl)pyrido[3,4-d]pyrimidin-4(3H)-ones, a series of potent JmjC histone N-methyl lysine demethylase (KDM) inhibitors which bind to Fe(II) in the active site. Substitution from C4 of the pyrazole moiety allows access to the histone peptide substrate binding site; incorporation of a conformationally constrained 4-phenylpiperidine linker gives derivatives such as 54j and 54k which demonstrate equipotent activity versus the KDM4 (JMJD2) and KDM5 (JARID1) subfamily demethylases, selectivity over representative exemplars of the KDM2, KDM3, and KDM6 subfamilies, cellular permeability in the Caco-2 assay, and, for 54k, inhibition of H3K9Me3 and H3K4Me3 demethylation in a cell-based assay.

View Article and Find Full Text PDF

WNT signaling is frequently deregulated in malignancy, particularly in colon cancer, and plays a key role in the generation and maintenance of cancer stem cells. We report the discovery and optimization of a 3,4,5-trisubstituted pyridine 9 using a high-throughput cell-based reporter assay of WNT pathway activity. We demonstrate a twisted conformation about the pyridine-piperidine bond of 9 by small-molecule X-ray crystallography.

View Article and Find Full Text PDF