Sensors (Basel)
September 2017
Accuracy is an important measure of system performance and remains a challenge in 3D range gated reconstruction despite the advancement in laser and sensor technology. The weighted average model that is commonly used for range estimation is heavily influenced by the intensity variation due to various factors. Accuracy improvement in term of range estimation is therefore important to fully optimise the system performance.
View Article and Find Full Text PDFThe range gated technique is a promising laser ranging method that is widely used in different fields such as surveillance, industry, and military. In a range gated system, a reflected laser pulse returned from the target scene contains key information for range reconstruction, which directly affects the system performance. Therefore, it is necessary to study the characteristics and effects of the target reflection factor.
View Article and Find Full Text PDFRange determination has crucial dependency of intensity over distance due to the fact that output of a range gated system is the reflectivity and range information expressed in term of intensity. From our experimental study, the analyzed trend line of reflected intensity versus range agrees with the theoretical model where it underlies an inverse range-squared dependency. Considering the energy attenuation factor for a better three-dimensional (3D) solution, a range compensation model is derived based on time slicing technique to compensate the effect imposed by distance beyond an optimum range.
View Article and Find Full Text PDFThe range-gated imaging systems are reliable underwater imaging system with the capability to minimize backscattering effect from turbid media. The tail-gating technique has been developed to fine tune the signal to backscattering ratio and hence improve the gated image quality. However, the tail-gating technique has limited image quality enhancement in high turbidity levels.
View Article and Find Full Text PDF