Publications by authors named "Ching J Lai"

Obstructive sleep apnea, characterized by airway exposure to intermittent hypoxia (IH), is associated with laryngeal airway hyperreactivity (LAH) and laryngeal inflammation. The sensitization of capsaicin-sensitive superior laryngeal afferents (CSSLAs) by inflammatory mediators has been implicated in the pathogenesis of LAH. Nerve growth factor (NGF) is an inflammatory mediator that acts on tropomyosin receptor kinase A (TrkA) and the p75 neurotrophin receptor (p75) to induce lower airway hyperresponsiveness.

View Article and Find Full Text PDF

Methylglyoxal (MG), a reactive metabolic byproduct of glycolysis, is a causative of painful diabetic neuropathy. Patients with diabetes are associated with more frequent severe asthma exacerbation. Stimulation of capsaicin-sensitive lung vagal (CSLV) afferents may contribute to the pathogenesis of hyperreactive airway diseases such as asthma.

View Article and Find Full Text PDF

Cough is a pivotal airway protective reflex, yet the effects of prolonged mechanical ventilation (PMV) on cough function are unknown. This study compared the cough function in subjects with PMV (≥ 21 days, n = 29) and those with short-term mechanical ventilation (SMV, ≤ 7 days, n = 27). Cough reflex sensitivity was measured by capsaicin provocation concentrations after extubation.

View Article and Find Full Text PDF

This study investigated whether intermittent hypoxia (IH) induces airway hyperresponsiveness (AHR) and associated with lung inflammation. Male Brown Norway rats were exposed to 14-day IH or room air (RA) for 6 h/day. One day after the last exposure, total lung resistance to various doses of methacholine was measured as an index of bronchoconstrictive responses.

View Article and Find Full Text PDF

Obstructive sleep apnea, similar to intermittent hypoxia (IH) during sleep, is associated with laryngeal airway hyperreactivity (LAH). IH-induced laryngeal oxidative stress may contribute to LAH, but the underlying mechanism remains unknown. Conscious rats were subjected to repetitive 75 s cycles of IH for 7 or 14 consecutive days.

View Article and Find Full Text PDF
Article Synopsis
  • Obstructive sleep apnea (OSA) causes intermittent hypoxia, leading to increased airway hypersensitivity and lung inflammation, particularly influenced by inflammatory mediators affecting lung vagal C fibers (LVCFs).
  • In an experiment with female rats, those that underwent ovariectomy (OVX) showed heightened sensitivity of LVCFs and increased apneic responses to chemical stimulants after being exposed to intermittent hypoxia, compared to intact rats.
  • Supplementation with low doses of estrogen (17β-estradiol) mitigated the OVX-induced enhanced sensitivity and lung inflammation in response to intermittent hypoxia, suggesting that ovarian hormones play a protective role in these pathways.
View Article and Find Full Text PDF

Obstructive sleep apnea (OSA), manifested by airway exposure to intermittent hypoxia (IH), is associated with excess reactive oxygen species (ROS) production in airways, airway inflammation, and hyperreactive airway diseases. The cause-effect relationship for these events remains unclear. We investigated the inflammatory role of ROS-sensitive AMP-activated protein kinase (AMPK) in IH-induced airway hypersensitivity mediated by lung vagal C fibers (LVCFs) in rats.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA), manifested by exposure to chronic intermittent hypoxia (CIH) and excess production of reactive oxygen species (ROS) in the airways, is associated with hyperreactive airway diseases. ROS, particularly when created by NADPH oxidase, are known to sensitize lung vagal C fibers (LVCFs), which may contribute to airway hypersensitivity pathogenesis. We investigated whether CIH augments the reflex and afferent responses of LVCFs to chemical stimulants and the roles of ROS and NADPH oxidase in such airway hypersensitivity.

View Article and Find Full Text PDF

Only very limited information regarding the protective effects of the superoxide anion scavenger on chronic intermittent hypoxia-induced cardiac apoptosis is available. The purpose of this study is to evaluate the effects of the superoxide anion scavenger on cardiac apoptotic and prosurvival pathways in rats with sleep apnea. Forty-two Sprague-Dawley rats were divided into three groups, rats with normoxic exposure (Control, 21% O2, 1 mo), rats with chronic intermittent hypoxia exposure (Hypoxia, 3-7% O2vs.

View Article and Find Full Text PDF

Background: Laryngeal exposure to cigarette smoke (CS) evokes sensory irritation, but the mechanisms are largely unclear. The TRPA1 and TRPV1 receptors are two types of Ca(2+)-permeant channels located at the terminals of airway capsaicin-sensitive afferents. We investigated the mechanisms underlying the airway reflex evoked by laryngeal CS exposure in anesthetized rats.

View Article and Find Full Text PDF

The terminals of vagal lung C fibers (VLCFs) express various types of pharmacological receptors that are important to the elicitation of airway reflexes and the development of airway hypersensitivity. We investigated the blockade of the reflex and afferent responses of VLCFs to intravenous injections of agonists using perivagal treatment with antagonists (PAT) targeting the transient receptor potential vanilloid 1, P2X, and 5-HT(3) receptors in anesthetized rats. Blockading these responses via perivagal capsaicin treatment (PCT), which blocks the neural conduction of C fibers, was also studied.

View Article and Find Full Text PDF

Obstructive sleep apnea, manifested by intermittent hypoxia and excess production of reactive oxygen species (ROS) in airways, is associated with hyperreactive airway diseases, but the mechanism remains unclear. Sensitization of lung vagal C fibers (LVCFs) contributes to the airway hypersensitivity. We investigated the mechanisms underlying the sensitization of LVCFs with acute intermittent hypoxia (AIH), by 10 episodes of exposure to 30 s of hypoxic air (0%, 5%, or 10% O(2)) followed by 30 s of room air in anesthetized, open-chest, and artificially ventilated rats.

View Article and Find Full Text PDF

This study was carried out to investigate the role of reactive oxygen species (ROS) in the elevation of cardiorespiratory responses during the development of intermittent hypoxia (IH)-induced hypertension. Rats were exposed to either 30 days of IH [(30s N₂)+(45 s room air (RA)] or RA for 6 h/day. After 5 days of exposure, stable mean arterial pressure, normalized low-frequency power of pulses interval spectrogram (a marker of cardiac sympathetic outflow), and minute ventilation (an index for arterial chemoreflex activation) were significantly increased throughout the observation period in IH-exposed rats, but not in RA-exposed rats.

View Article and Find Full Text PDF

The gastric myoelectrical activity (GMA) fluctuates across sleep-wake states as a result of modulation by the brain-gut axis. The role of the autonomic nervous system in this phenomenon, however, was not elucidated fully. Through simultaneous recording and subsequent continuous power spectral analysis of electroencephalogram, electromyogram, electrocardiogram and electrogastromyogram (EGMG) in 16 freely moving Wistar rats, the sleep-wake states of the animals were defined and indices of cardiac autonomic regulation and GMA were calculated.

View Article and Find Full Text PDF

Study Objectives: To explore the role of autonomic nervous system in initiation of sleep-wake transitions.

Design: Changes in cardiovascular variability during sleep-wake transitions of adult male Wistar-Kyoto rats on their normal daytime sleep were analyzed.

Interventions: A 6-h daytime sleep-wakefulness recording session was performed.

View Article and Find Full Text PDF

Introduction: Many previous studies have suggested that the high-frequency (HF) power of the heart rate variability may represent cardiac vagal activity although direct evidence of a correlation between the HF and vagal neuronal activity is still lacking. In the present study, we performed a regression analysis of the HF and vagal neurograms.

Methods And Results: Experiments were carried out on adult male Sprague-Dawley rats anesthetized with a continuous infusion of pentobarbital sodium.

View Article and Find Full Text PDF
Article Synopsis
  • Zolpidem, a new nonbenzodiazepine sedative-hypnotic, affects sleep and cardiac autonomic functions, though its precise impact is not fully understood.
  • The study compared the effects of zolpidem and triazolam on sleep and cardiac modulation in Wistar-Kyoto rats using continuous monitoring of EEG, electromyogram, and heart rate.
  • Results showed that zolpidem significantly increased quiet sleep duration and improved cardiac activity at a specific dose, indicating potential benefits over triazolam for sleep quality and heart function.
View Article and Find Full Text PDF

Circulatory endotoxin can stimulate vagal pulmonary C fibers and rapidly adapting receptors (RARs) in rats, but the underlying mechanisms are not clear. We investigated the involvement of hydroxyl radicals and cyclooxygenase metabolites in the stimulation of C fibers and RARs by circulatory endotoxin (50 mg/kg) in 112 anesthetized, paralyzed, and artificially ventilated rats. In rats pretreated with the vehicle, endotoxin stimulated C fibers and RARs and caused a slight increase in total lung resistance (Rl) and a decrease in dynamic lung compliance.

View Article and Find Full Text PDF

Study Objectives: To explore whether spontaneous hypertension is associated with a change in sleep pattern in rats.

Design: Adult male spontaneously hypertensive rats (SHR) were compared to normotensive Wistar-Kyoto rats (WKY) on their normal daytime sleep pattern.

Participants: Ten WKY and 10 SHR.

View Article and Find Full Text PDF

The role of the autonomic nervous system in spontaneous hypertension during each stage of the sleep-wake cycle remains unclear. The present study attempted to evaluate the differences in cardiac autonomic modulations among spontaneously hypertensive rats (SHR), normotensive Wistar-Kyoto rats (WKY), and Sprague-Dawley rats (SD) across sleep-wake cycles. Continuous power spectral analysis of electroencephalogram, electromyogram, and heart rate variability was performed in unanesthetized free moving rats during daytime sleep.

View Article and Find Full Text PDF

To explore whether depth of sleep is related to changes in autonomic control in rats, continuous power-spectral analysis of electroencephalogram (EEG) and heart rate variability (HRV) was performed in unanesthetized rats during normal daytime sleep. Quiet sleep (QS) was associated with an increase in high-frequency power of HRV (0.6-2.

View Article and Find Full Text PDF

A low-noise flexible system for the simultaneous recording and analysis of several electrical signals (EEG, ECG, EMG, and diaphragm EMG) from the same rat was constructed for studying changes in physiological functions during the sleep-wake cycle. The hardware in the system includes a multichannel amplifier, a video camera, a timer code generator, and a PC. A miniature buffer headstage with high-input impedance connected to a 6-channel amplifier was developed.

View Article and Find Full Text PDF

Although endotoxin is known to induce various pulmonary responses that are linked to the function of lung vagal sensory receptors, its effects on these pulmonary receptors are still not clear. This study investigated the effects of circulatory endotoxin on the afferent activity of lung vagal sensory receptors in rats. We recorded afferent activity arising from vagal pulmonary C fibers (CFs), rapidly adapting receptors (RARs), tonic pulmonary stretch receptors (T-PSRs), and phasic pulmonary stretch receptors (P-PSRs) in 64 anesthetized, paralyzed, and artificially ventilated rats.

View Article and Find Full Text PDF