Alzheimer's disease (AD) is a prevalent neurodegenerative condition characterized by the aggregation of amyloid-β plaques and neurofibrillary tangles in the brain, leading to synaptic dysfunction and neuronal degeneration. Recently, new treatment approaches involving drugs such as donanemab and lecanemab have been introduced for AD. However, these drug regimens have been associated with adverse effects, leading to the exploration of gene therapy as a potential treatment option.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common cause of late-life dementia characterized by progressive neurodegeneration and brain deposition of amyloid-β (Aβ) and phosphorylated tau. The ε2 encoding apolipoprotein E () is a protective allele against AD among the three genotypes ( ε2, ε3, ε4), while is the strongest genetic factor substantially increasing AD risk. APOE regulates brain lipid homeostasis and maintaining synaptic plasticity and neuronal function, where has a superior function compared to and .
View Article and Find Full Text PDFBrain-targeted gene delivery across the blood-brain barrier (BBB) is a significant challenge in the 21st century for the healthcare sector, particularly in developing an effective treatment strategy against Alzheimer's disease (AD). The Internal architecture of the brain capillary endothelium restricts bio-actives entry into the brain. Additionally, therapy with nucleic acids faces challenges like vulnerability to degradation by nucleases and potential immune responses.
View Article and Find Full Text PDF