Claudins are a 27-member protein family that form and fortify specialized cell contacts in endothelium and epithelium called tight junctions. Tight junctions restrict paracellular transport across tissues by forming molecular barriers between cells. Claudin-binding molecules thus hold promise for modulating tight junction permeability to deliver drugs or as therapeutics to treat tight junction-linked disease.
View Article and Find Full Text PDFToxins (Basel)
October 2023
Clostridium perfringens enterotoxin (CpE) is a β-pore forming toxin that disrupts gastrointestinal homeostasis in mammals by binding membrane protein receptors called claudins. Although structures of CpE fragments bound to claudins have been determined, the mechanisms that trigger CpE activation and oligomerization that lead to the formation of cytotoxic β-pores remain undetermined. Proteolysis of CpE in the gut by trypsin has been shown to play a role in this and subsequent cytotoxicity processes.
View Article and Find Full Text PDFClaudins are a family of ∼25 kDa membrane proteins that integrate into tight junctions to form molecular barriers at the paracellular spaces between endothelial and epithelial cells. Humans have 27 subtypes, which homo- and hetero-oligomerize to impart distinct properties and physiological functions to tissues and organs. As the structural and functional backbone of tight junctions, claudins are attractive targets for therapeutics capable of modulating tissue permeability to deliver drugs or treat disease.
View Article and Find Full Text PDFStrains of Clostridium perfringens produce a two-domain enterotoxin (CpE) that afflicts humans and domesticated animals, causing prevalent gastrointestinal illnesses. CpE's C-terminal domain (cCpE) binds cell surface receptors, followed by a restructuring of its N-terminal domain to form a membrane-penetrating β-barrel pore, which is toxic to epithelial cells of the gut. The claudin family of membrane proteins are known receptors for CpE and also control the architecture and function of cell-cell contacts (tight junctions) that create barriers to intercellular molecular transport.
View Article and Find Full Text PDFClaudins are a family of integral membrane proteins that enable epithelial cell/cell interactions by localizing to and driving the formation of tight junctions. Via claudin self-assembly within the membranes of adjoining cells, their extracellular domains interact, forming barriers to the paracellular transport of small molecules and ions. The bacterium causes prevalent gastrointestinal disorders in mammals by employing an enterotoxin (CpE) that targets claudins.
View Article and Find Full Text PDFDue to the COVID-19 pandemic and multiple devastating forest fires, the 2020 meeting of the Rocky Mountain Virology Association was held virtually. The three-day gathering featured talks describing recent advances in virology and prion research. The keynote presentation described the measles virus paradox of immune suppression and life-long immunity.
View Article and Find Full Text PDF