Publications by authors named "Chindi Wang"

Allen Brain Atlas (ABA) provides a valuable resource of spatial/temporal gene expressions in mammalian brains. Despite rich information extracted from this database, current analyses suffer from several limitations. First, most studies are either gene-centric or region-centric, thus are inadequate to capture the superposition of multiple spatial-temporal patterns.

View Article and Find Full Text PDF

Multiple-walled carbon nanotubes (MWCNTs) may cause carcinogenesis. We found that long-term exposure to MWCNTs can induce irreversible oncogenic transformation of human bronchial epithelial cells and tumorigenicity in vivo. A genome-wide array-comparative genomic hybridization (aCGH) analysis revealed global chromosomal aberration in MWCNTs-treated clones, predominantly at chromosome 2q31-32, where the potential oncogenes HOXD9 and HOXD13 are located.

View Article and Find Full Text PDF

Background: To elucidate the molecular complications in many complex diseases, we argue for the priority to construct a model representing the normal physiological state of a cell/tissue.

Results: By analyzing three independent microarray datasets on normal human tissues, we established a quantitative molecular model GET, which consists of 24 tissue-specific Gene Expression Templates constructed from a set of 56 genes, for predicting 24 distinct tissue types under disease-free condition. 99.

View Article and Find Full Text PDF

Purpose: Although epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been proven more effective for patients with lung adenocarcinoma with EGFR-activating mutation rather than wild type, the former group still includes approximately 30% nonresponders. The molecular basis of this substantial response heterogeneity is unknown. Our purpose was to seek molecular aberrations contributing to disease progression at the genome-wide level and identify the prognostic signature unique to patients with EGFR-activating mutation.

View Article and Find Full Text PDF

Background: The enormous amount of sequence data available in the public domain database has been a gold mine for researchers exploring various themes in life sciences, and hence the quality of such data is of serious concern to researchers. Removal of vector contamination is one of the most significant operations to obtain accurate sequence data containing only a cDNA insert from the basecalls output by an automatic DNA sequencer. Popular bioinformatics programs to accomplish vector trimming include LUCY, cross_match and SeqClean.

View Article and Find Full Text PDF