This study focused on the characterisation of soluble microbial products (SMPs) produced from a full-scale multi-stage (anaerobic/aerobic) industrial wastewater treatment plant, and contrasted them to the SMPs detected in the effluent of a lab-scale AnMBR treating synthetic wastewater to determine if there were any common solutes detected irrespective of the feed organics. Recently developed analytical methods using gas chromatography coupled mass spectrometry (GC-MS) and liquid chromatography coupled quadrupole-time-of-flight (LC-Q-ToF) for SMP characterisation in a wide molecular weight (MW) range of 30-2000 Da (Da) were applied. Samples collected from the Industrial Wastewater plant were the upflow anaerobic sludge blanket (UASB) influent and effluent, and aerobic membrane bioreactor (MBR) effluent before discharge.
View Article and Find Full Text PDFThis work examined the production and catabolism/biotransformation dynamics of SMPs down the length of an eight-compartment-anaerobic baffled reactor (ABR) which physically separates the biological processes, in contrast to completely mixed reactors which do not enable these dynamics to measured, and this is totally novel. SMPs were extracted and characterised by gas and liquid chromatography coupled mass spectrometry to determine their composition and production/catabolism. 60%-70% of the feed compounds decreased from the first to fourth compartment; the increase in SMPs after the fourth compartment suggested a mixture of degraded and biotransformed compounds, and microbial products.
View Article and Find Full Text PDFWhile the definition of soluble microbial products (SMP) remains somewhat contentious, they have been widely accepted to be the pool of organic compounds which are released by cells into their surroundings (liquid or otherwise) due to substrate metabolism and biomass decay. SMPs are also potential precursors of disinfection by-products, and are known to be important in membrane fouling. With recent developments in analytical methodologies, many of the low molecular weight (MW) compounds can now be identified, although they are often incorrectly identified as recalcitrant compounds present in the influent.
View Article and Find Full Text PDFBioresour Technol
October 2018
Anaerobic membrane bioreactors (AnMBR) are very effective for wastewater treatment, however, with the antibiotic ciprofloxacin (CIP) (0-4.7 mg CIP/L) in the feed their performance decreases, the characteristics of the effluent changes, and further treatment is needed to recycle or discharge the treated effluent. Batch experiments using six activated carbons to treat AnMBR effluents resulting from the treatment of a synthetic wastewater containing ciprofloxacin were carried out at 35 °C.
View Article and Find Full Text PDFEffluents from wastewater treatment systems contain a variety of organic compounds, including end products from the degradation of influent substrates, nonbiodegradable feed compounds, and soluble microbial products (SMPs) produced by microbial metabolism. It is important to identify the major components of these SMPs to understand what is in wastewater effluents. In this study, physical pretreatments to extract and concentrate low molecular weight SMPs (MW< 580 Da) from effluents were optimized.
View Article and Find Full Text PDFIdentification of soluble microbial products (SMPs) released during bacterial metabolism in mixed cultures in bioreactors is essential to understanding fundamental mechanisms of their biological production. SMPs constitute one of the main foulants (together with colloids and bacterial flocs) in membrane bioreactors widely used to treat and ultimately recycle wastewater. More importantly, the composition and origin of potentially toxic, carcinogenic, or mutagenic SMPs in renewable/reused water supplies must be determined and controlled.
View Article and Find Full Text PDFIn light of global warming mitigation efforts, increasing sludge disposal costs, and need for reduction in the carbon footprint of wastewater treatment plants, innovation in treatment technology has been tailored towards energy self-sufficiency. The AB process is a promising technology for achieving maximal energy recovery from wastewaters with minimum energy expenditure and therefore inherently reducing excess sludge production. Characterization of this novel sludge and its comparison with the more conventional B-stage sludge are necessary for a deeper understanding of AB treatment process design.
View Article and Find Full Text PDFThis study investigated the behaviour and characteristics of soluble microbial products (SMP) in two anoxic-aerobic membrane bioreactors (MBRs): MBRcontrol and MBRpharma, for treating municipal wastewater. Both protein and polysaccharides measured exhibited higher concentrations in the MBRpharma than the MBRcontrol. Molecular weight (MW) distribution analysis revealed that the presence of pharmaceuticals enhanced the accumulation of SMPs with macro- (13,091 kDa and 1587 kDa) and intermediate-MW (189 kDa) compounds in the anoxic MBRpharma, while a substantial decrease was observed in both MBR effluents.
View Article and Find Full Text PDFFive commercially available assay kits were tested on the same protein sample with the addition of 17 different types of interfering substances typically found in the biological wastewater treatment, and a comparison of the use of these assays with 22 different protein and peptide samples is also presented. It was shown that a wide variety of substances can interfere dramatically with these assays; the metachromatic response was also clearly influenced by different proteinaceous material. Measurement of the "protein" content in the effluent of an anaerobic membrane bioreactor was then carried out using these assay methods.
View Article and Find Full Text PDFThis manuscript presents a comparison of the A-stage and B-stage sludges in terms of anaerobic biodegradability and low molecular weight compounds present in the supernatant using Gas Chromatography-Mass Spectrometry (GC-MS). The GC-MS analysis of A-stage and B-stage supernatants identified respectively 43 and 19 organic compounds consisting mainly of aromatics (27.9% and 21%), alcohols (25.
View Article and Find Full Text PDFEffluents from biological processes contain a wide range of complex organic compounds, including soluble microbial products (SMP) and extracellular polymers (ECP), released during bacteria metabolism in mixed culture in bioreactors. It is important to clearly identify the primary components of SMPs and ECPs in order to understand the fundamental mechanisms of biological activity that create these compounds, and how to reduce these compounds in the effluent. In addition, these compounds constitute the main foulants in membrane bioreactors which are being used more widely around the world.
View Article and Find Full Text PDFRecently, perfluorinated compounds (PFCs) have been noted as causes of some of the important environmental problems in recent years due to their occurrences and properties. The most commonly used PFCs are perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), which have been used in many kinds of products. They have been found in surface water and tap water in both developed and developing countries around the world including in North America, Europe and Asia.
View Article and Find Full Text PDFPerfluorinated compounds (PFCs), especially perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are fully fluorinated organic compounds, which have been used in many industrial applications. These chemicals have contaminated surface water all over the world even in developing countries like Thailand. The previous study showed the contamination in Chao Phraya River in 2006 and 2007.
View Article and Find Full Text PDFPerfluorinated compounds (PFCs) are fully fluorinated organic compounds, which have been used in many industrial processes and have been detected in wastewater and sludge from municipal wastewater treatment plants (WWTPs) around the world. This study focused on the occurrences of PFCs and PFCs mass flows in the industrial wastewater treatment plants, which reported to be the important sources of PFCs. Surveys were conducted in central wastewater treatment plant in two industrial zones in Thailand.
View Article and Find Full Text PDFThere is increasing concern about occurrences of perfluorinated compounds (PFCs) in the environment due to their persistent, bioaccumulation, and potentially toxic effects. We investigated contamination of 11 PFCs (C4-C12) in the Yodo River system, which is a major source of drinking water for more than 11 million people of Kansai region in Japan. PFCs were detected in higher concentration even exceeding more than 1000 ng/L in some cases.
View Article and Find Full Text PDFThis study examines occurrences of 11 perfluorinated compounds (PFCs) in several wastewater treatment plants in Japan and Thailand. Surveys are conducted in eight wastewater treatment plants (WWTPs) in Japan and central WWTPs of five industrial estates (IEs) in Thailand. Samples are collected from all major treatment processes in order to understand the behavior of PFCs in WWTPs.
View Article and Find Full Text PDFPerfluorinated compounds (PFCs) have been used for many years, and are distributed all over the world. This study focused on occurrences of PFCs, especially perfluorooctane sulfonate (PFOS) and perfluorooctonoic acid (PFOA) in Thai rivers and industrial estate discharges, while comparing results with rivers of other Asian countries (Japan, China, and Malaysia). Surveys were conducted in Chao Phraya River, Bangpakong River and three industrial estates.
View Article and Find Full Text PDF