Publications by authors named "China Mauck"

We theoretically show that a superposition of plane waves causes small (compared to the wavelength) particles dispersed in a fluid to assemble in quasiperiodic two or three-dimensional patterns. We experimentally demonstrate this theory by using ultrasound waves to assemble quasiperiodic patterns of carbon nanoparticles in water using an octagonal arrangement of ultrasound transducers, and we document good agreement between theory and experiments. The theory also applies to obtaining quasiperiodic patterns in other situations where particles move with linear waves, such as optical lattices.

View Article and Find Full Text PDF

We determine crystal-like materials that can be fabricated by using a standing acoustic wave to arrange small particles in a non-viscous liquid resin, which is cured afterwards to keep the particles in the desired locations. For identical spherical particles with the same physical properties and small compared to the wavelength, the locations where the particles are trapped correspond to the minima of an acoustic radiation potential which describes the net forces that a particle is subject to. We show that the global minima of spatially periodic acoustic radiation potentials can be predicted by the eigenspace of a small real symmetric matrix corresponding to its smallest eigenvalue.

View Article and Find Full Text PDF