Many heteroacenes have been extensively studied to improve device performances; however, the morphological effects stemmed from the chemical modification on a multiscale remain less explored. In this research, five axisymmetric S,N-heteropentacenes (, , , , and ) are studied to reveal the influences of molecular symmetry and end-capping substituents on the structure-property relationship, the thermal stability, crystallization behavior, film morphology, and OFET performance. Phase behavior was probed by differential scanning calorimetry (DSC), while the quality of the crystal array and structural details was investigated by optical microscopy (OM) and grazing-incidence wide-angle X-ray scattering (GIWAXS).
View Article and Find Full Text PDFAlthough chemical modifications on conjugated molecules are widely applied for the purpose of improving processability and device performances, the effect of the modification was far less investigated. Here, five S, N-hexacenes are studied to reveal the influences of (1) the lateral alkyl chain, (2) the terminal group (thiophene vs benzene), and (3) the end-capping phenyl group of the hexacenes on the morphology and organic field-effect transistor (OFET) performances. Crystal arrays of the hexacenes were prepared via polydimethylsiloxane (PDMS)-assisted crystallization (PAC) prior to morphological and OFET characterizations.
View Article and Find Full Text PDFThree novel donor-acceptor alternating polymers containing ladder-type pentacyclic heteroacenes (PBo, PBi, and PT) are synthesized, characterized, and further applied to organic field effect transistors (OFETs) and polymer solar cells. Significant aspects of quinoidal characters, electrochemical properties, optical absorption, frontier orbitals, backbone coplanarity, molecular orientation, charge carrier mobilities, morphology discrepancies, and the corresponding device performances are notably different with various heteroarenes. PT exhibits a stronger quinoidal mesomeric structure, linear and coplanar conformation, smooth surface morphology, and better bimodal crystalline structures, which is beneficial to extend the π-conjugation and promotes charge transport via 3-D transport pathways and in consequence improves overall device performances.
View Article and Find Full Text PDFDonor-acceptor-acceptor' small-molecule donors are synthesized to investigate regioisomeric effects on organic photovoltaic device performance. Cross-conjugation in 2-((7-(N-(2-ethylhexyl)-benzothieno[3,2-b]thieno[3,2-d]pyrrol-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)methylene)malononitrile leads to an increased open-circuit voltage compared with its isomer 2-((7-(N-(2-ethylhexyl)-benzothieno[3,2-b]thieno[2,3-d]pyrrol-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)methylene)malononitrile. A correlation is then established between molecular conjugation length and orbital energies, and hence open-circuit voltage.
View Article and Find Full Text PDFExtremely efficient sky-blue organic electroluminescence with external quantum efficiency of ≈37% is achieved in a conventional planar device structure, using a highly efficient thermally activated delayed fluorescence emitter based on the spiroacridine-triazine hybrid and simultaneously possessing nearly unitary (100%) photoluminescence quantum yield, excellent thermal stability, and strongly horizontally oriented emitting dipoles (with a horizontal dipole ratio of 83%).
View Article and Find Full Text PDFTwo donor-acceptor-acceptor (D-A-A)-type molecules incorporating nitrobenzoxadiazole (NBO) as the A-A block and ditolylamine as the D block bridged through a phenylene (PNBO) and a thiophene (TNBO) spacer were synthesized in a one-step coupling reaction. Their electronic, photophysical, and thermal properties; crystallographic analysis; and theoretical calculations were studied to establish a clear structure-property relationship. The results indicate that the quinoidal character of the thiophene bridge strongly governs the structural features and crystal packings (herringbone vs.
View Article and Find Full Text PDF