Publications by authors named "Chin-Chou Chu"

In this study, we present a simple, hand-powered, and electricity-free centrifuge platform based on a commercially available "fidget-spinner." The centrifugal force provided by this inexpensive and easy-to-use toy is sufficient to separate whole blood, producing a plasma yield rate and purity of 30% and 99%, respectively, separated in as little as 4-7 min. We verified the separated plasma by performing a paper-based HIV-1 p24 capsid protein enzyme-linked immunosorbent assay, which achieved a recovery rate of up to 98%, indicating the plasma features extremely low matrix interference effects.

View Article and Find Full Text PDF

The planarian is widely used as a model for studying tissue regeneration. In this study, we used optical coherence tomography (OCT) for the real-time, high-resolution imaging of planarian tissue regeneration. Five planaria were sliced transversely to produce 5 head and 5 tail fragments.

View Article and Find Full Text PDF

The zebrafish is a well-established model system used to study and understand various human biological processes. The present study used OCT to investigate growth of the adult zebrafish brain. Twenty zebrafish were studied, using their standard lengths as indicators of their age.

View Article and Find Full Text PDF

The two-dimensional (2D) Nakagami image complements the ultrasound B-scan image when attempting to visualize the scatterer properties of tissues. The resolution of the Nakagami image is lower than that of the B-scan image, since the former is produced by processing the raw envelope data using a 2D sliding window with side lengths typically corresponding to three times the pulse length of the incident ultrasound. This paper proposes using three-dimensional (3D) Nakagami imaging for improving the resolution of the obtained Nakagami image and providing more complete information of scatterers for a better tissue characterization.

View Article and Find Full Text PDF

Polymer microfluidic chips employing in situ photopolymerized polymethacrylate monoliths for high-performance liquid chromatography separations of peptides is described. The integrated chip design employs a 15 cm long separation column containing a reversed-phase polymethacrylate monolith as a stationary phase, with its front end seamlessly coupled to a 5 mm long methacrylate monolith which functions as a solid-phase extraction (SPE) element for sample cleanup and enrichment, serving to increase both detection sensitivity and separation performance. In addition to sample concentration and separation, solvent splitting is also performed on-chip, allowing the use of a conventional LC pump for the generation of on-chip nanoflow solvent gradients.

View Article and Find Full Text PDF

Augmentation index (AIx) calculated from the pressure waveform of an artery is widely used to quantify the arterial stiffness and evaluate the cardiovascular risk. The key for calculating AIx is to locate the inflection point on the waveform signal, which is caused by the wave reflection. This study applies the probability distribution of the pressure waveform to identify the inflection point for estimating AIx.

View Article and Find Full Text PDF