Publications by authors named "Chin Su Koh"

Article Synopsis
  • Integrating haptic feedback in virtual and augmented reality improves user experiences, but traditional electrotactile systems struggle with inconsistent results due to varying touch pressure.
  • This study introduces a transparent electrotactile screen using pressure-sensitive transistors to ensure stable haptic sensations by calibrating variations caused by different touch pressures.
  • The system also explores remote tactile stimulation through electromagnetic wave interference, enabling versatile feedback patterns like Morse code and Braille, enhancing immersion and accessibility through portable smart devices.
View Article and Find Full Text PDF

Conventional power-integrated wireless neural recording devices suffer from bulky, rigid batteries in head-mounted configurations, hindering the precise interpretation of the subject's natural behaviors. These power sources also pose risks of material leakage and overheating. We present the direct printing of a power-integrated wireless neural recording system that seamlessly conforms to the cranium.

View Article and Find Full Text PDF

Neuropathic pain is a type of chronic pain that entails severe prolonged sensory dysfunctions caused by a lesion of the somatosensory system. Many of those suffering from the condition do not experience significant improvement with existing medications, resulting in various side effects. In this study, Sprague-Dawley male rats were used, and long-term deep brain stimulation of the ventrolateral periaqueductal gray was conducted in a rat model of spared nerve injury.

View Article and Find Full Text PDF

Current soft neural probes are still operated by bulky, rigid electronics mounted to a body, which deteriorate the integrity of the device to biological systems and restrict the free behavior of a subject. We report a soft, conformable neural interface system that can monitor the single-unit activities of neurons with long-term stability. The system implements soft neural probes in the brain, and their subsidiary electronics which are directly printed on the cranial surface.

View Article and Find Full Text PDF

A significant challenge in improving the deep brain stimulation (DBS) system is the miniaturization of the device, aiming to integrate both the stimulator and the electrode into a compact unit with a wireless charging capability to reduce invasiveness. We present a miniaturized, fully implantable, and battery-free DBS system designed for rats, using a liquid crystal polymer (LCP), a biocompatible and long-term reliable material. The system integrates the simulator circuit, the receiver coil, and a 20 mm long depth-type microelectrode array in a dome-shaped LCP package that is 13 mm in diameter and 5 mm in height.

View Article and Find Full Text PDF

Activation of mammalian target of rapamycin (mTOR) has been known as one of the contributing factors in nociceptive sensitization after peripheral injury. Its activation followed by the phosphorylation of downstream effectors causes hyperexcitability of primary sensory neurons in the dorsal root ganglion. We investigated whether a single injection of rAAV-shmTOR would effectively downregulate both complexes of mTOR in the long-term and glial activation as well.

View Article and Find Full Text PDF

The work presented here introduces a facile strategy for the development of flexible and stretchable electrodes that harness the robust characteristics of carbon nanomaterials through laser processing techniques on a liquid crystal polymer (LCP) film. By utilizing LCP film as a biocompatible electronic substrate, control is demonstrated over the laser irradiation parameters to achieve efficient pattern generation and transfer printing processes, thereby yielding highly conductive laser-induced graphene (LIG) bioelectrodes. To enhance the resolution of the patterned LIG film, shadow masks are employed during laser scanning on the LCP film surface.

View Article and Find Full Text PDF

Objectives: Intraoperative navigation reduces the risk of major complications and increases the likelihood of optimal surgical outcomes. This paper presents an augmented reality (AR)-based simulation technique for ventriculostomy that visualizes brain deformations caused by the movements of a surgical instrument in a three-dimensional brain model. This is achieved by utilizing a position-based dynamics (PBD) physical deformation method on a preoperative brain image.

View Article and Find Full Text PDF

Brain-machine interface (BMI) provides an alternative route for controlling an external device with one's intention. For individuals with motor-related disability, the BMI technologies can be used to replace or restore motor functions. Therefore, BMIs for movement restoration generally decode the neural activity from the motor-related brain regions.

View Article and Find Full Text PDF

Spinal cord stimulation is a therapy to treat the severe neuropathic pain by suppressing the pain signal via electrical stimulation of the spinal cord. The conventional metal packaged and battery-operated implantable pulse generator (IPG) produces electrical pulses to stimulate the spinal cord. Despite its stable operation after implantation, the implantation site is limited due to its bulky size and heavy weight.

View Article and Find Full Text PDF

Aims: Neuropathic pain after spinal cord injury is one of the most difficult clinical problems after the loss of mobility, and pharmacological or neuromodulation therapy showed limited efficacy. In this study, we examine the possibility of pain modulation by a recombinant adeno-associated virus (rAAV) encoding small-hairpin RNA against GCH1 (rAAV-shGCH1) in a spinal cord injury model in which neuropathic pain was induced by a spinothalamic tract (STT) lesion.

Methods: Micro-electric lesioning was used to damage the left STT in rats (n = 32), and either rAAV-shGCH1 (n = 19) or rAAV control (n = 6) was injected into the dorsal horn of the rats at the same time.

View Article and Find Full Text PDF

Objective: Artificial manipulation of animal movement could offer interesting advantages and potential applications using the animal's inherited superior sensation and mobility. Although several behavior control models have been introduced, they generally epitomize virtual reward-based training models. In this model, rats are trained multiple times so they can recall the relationship between cues and rewards.

View Article and Find Full Text PDF

Background: The persistence of adult hippocampal neurogenesis (AHN) is sharply decreased in Alzheimer's disease (AD). The neuropathologies of AD include the presence of amyloid-β deposition in plaques, tau hyperphosphorylation in neurofibrillary tangles, and cholinergic system degeneration. The focused ultrasound (FUS)-mediated blood-brain barrier opening modulates tau hyperphosphorylation, the accumulation of amyloid-β proteins, and increases in AHN.

View Article and Find Full Text PDF

Background: The medial forebrain bundle (MFB) is involved in the integration of pleasure and reward. Previous studies have used various stimulation parameters for operant conditioning, though the effectiveness of these parameters has not been systematically studied.

Objectives: The purpose of the present study was to investigate the optimal MFB stimulation parameters for controlling the conditioned behavior of rats.

View Article and Find Full Text PDF

Although several studies have been performed to detect cancer using canine olfaction, none have investigated whether canine olfaction trained to the specific odor of one cancer is able to detect odor related to other unfamiliar cancers. To resolve this issue, we employed breast and colorectal cancer in vitro, and investigated whether trained dogs to odor related to metabolic waste from breast cancer are able to detect it from colorectal cancer, and vice versa. The culture liquid samples used in the cultivation of cancerous cells (4T1 and CT26) were employed as an experimental group.

View Article and Find Full Text PDF

OBJECTIVE The application of pharmacological therapeutics in neurological disorders is limited by the ability of these agents to penetrate the blood-brain barrier (BBB). Focused ultrasound (FUS) has recently gained attention for its potential application as a method for locally opening the BBB and thereby facilitating drug delivery into the brain parenchyma. However, this method still requires optimization to maximize its safety and efficacy for clinical use.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

Long-term electrode implant is a challenge for successful brain-computer interfaces (BCIs). It is well known that electrocorticography (ECoG) using flexible planar electrodes is more suitable for long-term implants than intracortical neural recordings using penetrative electrodes. In this study, we propose a convex-shaped, PDMS-parylene hybrid multi-electrode array for long-term stable ECoG recording on the brain or the spinal cord.

View Article and Find Full Text PDF

Here, we report that the development of a brain-to-brain interface (BBI) system that enables a human user to manipulate rat movement without any previous training. In our model, the remotely-guided rats (known as ratbots) successfully navigated a T-maze via contralateral turning behaviour induced by electrical stimulation of the nigrostriatal (NS) pathway by a brain- computer interface (BCI) based on the human controller's steady-state visually evoked potentials (SSVEPs). The system allowed human participants to manipulate rat movement with an average success rate of 82.

View Article and Find Full Text PDF

It is well known that the insular cortex is involved in the processing of painful input. The aim of this study was to evaluate the pain modulation role of the insular cortex during motor cortex stimulation (MCS). After inducing neuropathic pain (NP) rat models by the spared nerve injury method, we made a lesion on the rostral agranular insular cortex (RAIC) unilaterally and compared behaviorally determined pain threshold and latency in 2 groups: Group A (NP + MCS; = 7) and Group B (NP + RAIC lesion + MCS; = 7).

View Article and Find Full Text PDF

Chronic monitoring of intravesical pressure is required to detect the onset of intravesical hypertension and the progression of a more severe condition. Recent reports demonstrate the bladder state can be monitored from the spiking activity of the dorsal root ganglia or lumbosacral spinal cord. However, one of the most serious challenges for these methods is the difficulty of sustained spike signal acquisition due to the high-electrode-location-sensitivity of spikes or neuro-degeneration.

View Article and Find Full Text PDF

Background: For a self-paced motor imagery based brain-computer interface (BCI), the system should be able to recognize the occurrence of a motor imagery, as well as the type of the motor imagery. However, because of the difficulty of detecting the occurrence of a motor imagery, general motor imagery based BCI studies have been focusing on the cued motor imagery paradigm.

New Method: In this paper, we present a novel hybrid BCI system that uses near infrared spectroscopy (NIRS) and electroencephalography (EEG) systems together to achieve online self-paced motor imagery based BCI.

View Article and Find Full Text PDF

Objective: Chronic monitoring of the state of the bladder can be used to notify patients with urinary dysfunction when the bladder should be voided. Given that many spinal neurons respond both to somatic and visceral inputs, it is necessary to extract bladder information selectively from the spinal cord. Here, we hypothesize that sensory information with distinct modalities should be represented by the distinct ensemble activity patterns within the neuronal population and, therefore, analyzing the activity patterns of the neuronal population could distinguish bladder fullness from somatic stimuli.

View Article and Find Full Text PDF

Gut functions, such as gastrointestinal motility, gastric secretion and pancreatic secretion, were reduced with age. Glucose tolerance is impaired, and the release of insulin and β-cell's sensitivity on glucose are reduced with age. However, a lot of controversial data have been reported as insulin concentrations after glucose ingestion are either higher or no different in elderly and young subjects.

View Article and Find Full Text PDF

In this study, we characterize the hemodynamic changes in the main olfactory bulb of anesthetized Sprague-Dawley (SD) rats with near-infrared spectroscopy (NIRS, ISS Imagent) during presentation of two different odorants. Odorants were presented for 10 seconds with clean air via an automatic odor stimulator. Odorants are: (i) plain air as a reference (Blank), (ii) 2-Heptanone (HEP), (iii) Isopropylbenzene (IB).

View Article and Find Full Text PDF