Publications by authors named "Chin Pao Huang"

Sediments are important sinks for di-(2-ethylhexyl) phthalate (DEHP), a plasticizer, and thus, maintaining the sediment quality is essential for eliminating plasticizers in aqueous environments and recovering the sediment ecological functions. To mitigate the potential risks of endocrine-disrupting compounds, identifying an effective and eco-friendly degradation process of organic pollutants from sediments is important. However, sustainable and efficient utilization of slow pyrolysis for converting shark fishbone to generate shark fishbone biochar (SFBC) has rarely been explored.

View Article and Find Full Text PDF

This study synthesized (3-aminopropyl)triethoxysilane-functionalized porous silica (AP@MPS) to adsorb aqueous uranium (U(VI)). To comprehensively analyze the surface properties of the AP@MPS materials, a combination of SEM, BET, XPS, NMR, and zeta potential tests were conducted. The adsorption experiments for U(VI) revealed the rapid and efficient adsorption capacity of AP@MPS, with the solution condition of a constant solution pH = 6.

View Article and Find Full Text PDF

This study investigates the mechanism behind the oxidation di-(2-ethylhexyl) phthalate (DEHP) in marine sediment by coupling sulfite using biochar prepared from sorghum distillery residue (SDRBC). The rationale for this investigation stems from the need to seek effective methods for DEHP-laden marine sediment remediation. The aim is to assess the feasibility of sulfite-based advanced oxidation processes for treating hazardous materials such as DEHP containing sediment.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are critical environmental concerns due to their intrinsic toxic aromatic nature and concomitant circumstances that potentially harm the ecological and human health. In this study, converting mahogany (Swietenia macrophylla King) pericarps to value-added biochar by pyrolysis for evaluating the potential formation/destruction of biochar-bound PAHs was studied for the first time. This study designed and optimized the thermal processing conditions at 300-900 °C in the CO or N atmosphere, and heteroatoms (N, O, B, NB, and NS) were modified for mahogany pericarps biochar (MPBC) production.

View Article and Find Full Text PDF

Biochar production from cellulose biomass is an alternative solution in the search for clean and renewable biofuel. However, the rational design of cellulose biochar (CLBC) for polycyclic aromatic hydrocarbons (PAHs) reduction by integrating pyrolysis process parameters and introducing heteroatoms as inhibitors remains to be studied. Therefore, exogenous heteroatoms (N, B, S, SB, NB, and NS) were used to modify CLBC for the first time.

View Article and Find Full Text PDF

This research was to study the efficiency of Sphagnum moss-derived biochar (SMBC) in removing polycyclic aromatic hydrocarbons (PAHs) from marine sediment using a peroxymonosulfate (PMS)-based carbon-advanced oxidation process (PMS-CAOPs). Sphagnum moss-derived biochar (SMBC) was generated via a simple thermochemical process for PMS activation toward enhancing decontamination of sediments. At pH 6, the SMBC/PMS system achieved a PAH removal efficiency exceeding 78% in 12 h reaction time.

View Article and Find Full Text PDF

The formation of 2- to 6-ring polycyclic aromatic hydrocarbons (PAHs) in sorghum distillery residue-derived biochar (SDRBC) was evaluated under different thermochemical pyrolysis conditions of carbonization atmosphere (N or CO), temperature (300-900 °C) and doping with nonmetallic elements, i.e., N, B, O, P, N + B, and N + S.

View Article and Find Full Text PDF

The content of polycyclic aromatic hydrocarbons in pineapple leaf biochar was examined as a function of pyrolysis atmosphere (CO or N), pyrolysis temperature (300-900 °C), and heteroatom (N, B, O, P, NP, or NS) doping. Without doping, the polycyclic aromatic hydrocarbon production was maximal (1332 ± 27 ng/g) in CO at 300 °C and minimal (157 ± 2 ng/g) in N at 700 °C. The main components naphthalene and acenaphthylene accounted for about 91% of the total polycyclic aromatic hydrocarbon in the biochar prepared under CO at 300 °C.

View Article and Find Full Text PDF

The accumulation of emerging organic contaminants (EOCs) in waste activated sludge (WAS) is a global concern. In this study, a multi-heteroatom nitrogen and sulfur was successfully embedded into lignin-based biochar (N-S-LGBC) and used it to activate calcium peroxide (CP) for the degradation of 4-nonylphenol (4-NP) in WAS. N-S-LGBC/CP was effective in degrading 85 % of 4-NP within 12 h through the activation of CP owing to hydroxyl radicals and singlet oxygen species generated from the synergism among pyrrolic-N, thiophenic-S, and lattice oxygen, i.

View Article and Find Full Text PDF

This study synthesized dual heteroatom nitrogen and boron-co-doped lignin-based biochar (NB-LGBC) for calcium peroxide (CP) activation to enhance the removal of organic micropollutants (OMPs), namely, 4-nonylphenol (4-NP) from waste activated sludge (WAS). NB-LGBC/CP enhanced 4-NP degradation by arriving at 83 % removal in 12 h. The NB-LGBC/CP system degraded 4-NP via a synergistic interaction (HO•, O radicals, and singlet oxygen) and electron transfer due to the N-B-C bonding configurations.

View Article and Find Full Text PDF

Excess waste-activated sludge (WAS) is a major biosolid management problem due to its biohazardous and recalcitrant content of phthalate esters (PAEs). This study aimed to assess the combined use of biopolymer, poly-3-hydroxybutyrate and peroxymonosulfate to degrade PAEs and decontaminate WAS. Poly-3-hydroxybutyrate was biosynthesized by Cupriavidus sp.

View Article and Find Full Text PDF

The presence of di-(2-ethylhexyl) phthalate (DEHP) in the aquatic systems, specifically marine sediments has attracted considerable attention worldwide, as it enters the food chain and adversely affects the aquatic environment and subsequently human health. This study reports an efficient carbocatalytic activation of calcium peroxide (CP) using water hyacinth biochar (WHBC) toward the efficient remediation of DEHP-contaminated sediments and offer insights into biochar-mediated cellular cytotoxicity, using a combination of chemical and bioanalytical methods. The pyrolysis temperature (300-900 °C) for WHBC preparation significantly controlled catalytic capacity.

View Article and Find Full Text PDF

4-Nonylphenol is a typical endocrine-disrupting compound found in waste-activated sludge. This study evaluates the feasibility of blue-green algae (Spirulina platensis)-based biochar as a carbon-neutral material to improve sodium sulfite (S(IV))-mediated sludge purification. Blue-green algae-based biochar is an effective activator (at 500 °C and 3 × 10 M) of sodium sulfite and removed 75 % of 4-nonylphenol at pH 6 using at 1.

View Article and Find Full Text PDF

Metal-free single heteroatom (N, O, and B)-doped coconut-shell biochar (denoted as N-CSBC, O-CSBC, and B-CSBC, respectively) were fabricated in a one-step pyrolysis process to promote peroxymonosulfate (PMS) activation for the elimination of sulfathiazole (STZ) from aquaculture water. B-CSBC exhibited remarkably high catalytic activity with 92% of STZ degradation in 30 min attributed to the presence of meso-/micro-pores and B-containing functional groups (including B-N, B-C, and BO species). Radical quenching tests revealed SO, HO•, and O being the major electron acceptors contributing to STZ removal by PMS over B-CSBC catalyst.

View Article and Find Full Text PDF

This study employed a novel and environment-friendly biopolymer/oxidant catalytic system, viz., poly(3-hydroxybutyrate)/peroxymonosulfate (PHB/PMS), for pretreating wastewater sludge for the first time. Under optimal conditions, i.

View Article and Find Full Text PDF

The presence of 4-nonylphenol (4-NP), an endocrine disrupting chemical, waste activated sludge (WAS) or biosolids at elevated content requires effective method for 4-NP reduction in total sludge management. Herein, sorghum distillery residue-based biochar-activated peroxymonosulfate (SDRBC/PMS) system was studied as pretreatment of WAS. Results indicated 91% of 4-NP removal at pH 6.

View Article and Find Full Text PDF

The relationships and interactions between extracellular polymeric substances (EPS) and microplastics (MPs) in coral reef ecosystems were symmetrically investigated. The current study aims to investigate the responses of scleractinian coral (Goniopora columna) to exposure of model MPs, exemplified by polyethylene (PE), in the size range of 40-48 μm as affected by MPs concentration of MP in the range between 0 and 300 mg L for 14 days. The structure of EPS-associated microbial community was studied using a series of techniques including high-throughput sequencing of 16 S rRNA, transmission electron microscopy (TEM), hydrodynamic diameter, surface charge (via zeta potential), X-ray diffraction (XRD), attenuated total reflectance‒Fourier transform infrared (ATR‒FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and fluorescence excitation-emission matrix (FEEM) spectroscopy.

View Article and Find Full Text PDF

Waste activated sludge contaminated with high levels of 4-nonylphenol (4-NP) is a major environmental concern. We have synthesized lignin-based biochar (LGBC) for use as a carbocatalyst in calcium peroxide (CP)-mediated sewage sludge pretreatment. Treatment of sewage sludge with 3.

View Article and Find Full Text PDF

This paper reports the design and qualification of the first purpose-built, bench-scale reactor system to model the municipal waste-to-energy combustion of fluorinated polymers. Using the principle of similarity, the gas-phase combustion zone of a typical municipal waste-to-energy plant has been scaled down to the bench with a focus on chemical similarity. Chemical similarity is achieved in large part through the use of methanol as a surrogate for municipal solid waste (MSW).

View Article and Find Full Text PDF

The contamination of marine sediments by 4-nonylphenol (4-NP) has become a global environmental problem, therefore there are necessaries searching appropriate and sustainable remediation methods for in-situ applications. Herein, water hyacinth [(WH) (Eichhornia crassipes)]-derived metal-free biochar (WHBC) prepared at 300-900 °C was used to promote the calcium peroxide (CP)-mediated remediation of 4-NP-contaminaed sediments. At [CP] = 4.

View Article and Find Full Text PDF

Although the pollution of coral reefs by microplastics (MPs) is an environmental problem of global significance, the effects of MP concentration on scleractinian corals remain largely underexplored. Herein, we exposed a representative scleractinian coral (Goniopora columna) to different concentrations (5-300 mg L) of polyethylene microplastics (PE-MPs; 40-48 μm) over seven days and evaluated the changes in microbial community and extracellular polymeric substances (EPS) using fluorescence excitation-emission matrix spectroscopy and amplicon sequence variants (ASV). At a PE-MP concentration of 300 mg L, the relative abundance of Bacillus (Firmicutes phylum) and Ruegeria (Proteobacteria phylum) in PE-MP-associated EPS increased and decreased, respectively, while the effects of exposure depended on the particle size of the extracellular polymeric substance (EPS)-based matrix and the humification index.

View Article and Find Full Text PDF

A MoSSe nanohybrids (NHs) was synthesized, characterized, and tested for the degradation of tetracycline, oxytetracycline, and chlortetracycline under visible light irradiation. The Z-scheme MoSSe NHs exhibited higher specific surface area (∼10 times), faster charge separation, and greater photo-absorption than MoS nanoparticles (NPs) or MoSe NPs catalyst. The photocatalysts were characterized by ultraviolet-visible spectroscopy, X-ray diffraction, scanning electron microscopy, elemental mapping, transmission electron microscope, thermo-gravimetric analysis, X-ray photoelectron spectroscopy, photoluminescence, and electrochemical measurements.

View Article and Find Full Text PDF

Potential toxic chemicals, specifically, polycyclic aromatic hydrocarbons (PAHs), are major sediment contaminants. Herein, green seaweed (Ulva lactuca) was used as a feedstock and pyrolyzed at temperature in the range between 300 and 900 °C. The metal-free carbocatalyst (GSBC) for peroxymonosulfate (PMS) activation to degrade PAHs contaminated sediments was studied.

View Article and Find Full Text PDF

Antibiotic sulfamethoxazole (SMX) has been commonly found in various water matrices, therefore effective decontamination method is urgently needed. Metal-free pristine coconut-shell-derived biochar (CSBC), synthesized by thermochemical conversion at 700 °C, was used for activating peroxymonosulfate (PMS), an oxidant, to degrade SMX, a sulfonamide antibiotic, in water. SMX degradation, maximized at 0.

View Article and Find Full Text PDF