ACS Appl Mater Interfaces
September 2020
The recovery and separation of rare earth elements (REEs) are of national importance owing to the specific usages, high demand, and low supply of these elements. In this research, we have investigated the adsorption of rare earth elements onto DNA-functionalized mesoporous carbons with a BET surface area of 605 m/g and a median mesopore width of 48 Å. Three types of single-stranded DNA, one with 100 base units of thymine, another with 20 units of thymine, and the third, a 2000 unit long DNA from salmon milt were grafted on the carboxylated mesoporous carbon surface.
View Article and Find Full Text PDFConjugated polymers, such as poly(3,4-ethylene dioxythiophene) (PEDOT), have emerged as promising materials for interfacing biomedical devices with tissue because of their relatively soft mechanical properties, versatile organic chemistry, and inherent ability to conduct both ions and electrons. However, their limited adhesion to substrates is a concern for in vivo applications. We report an electrografting method to create covalently bonded PEDOT on solid substrates.
View Article and Find Full Text PDFUnlabelled: Conjugated polymers such as poly(3,4-ethylenedioxythiphene) (PEDOT) are of interest for a variety of applications including interfaces between electronic biomedical devices and living tissue. The mechanical properties, strength, and adhesion of these materials to solid substrates are all vital for long-term applications. We have been developing methods to quantify the mechanical properties of conjugated polymer thin films.
View Article and Find Full Text PDFPEDOT-co-EPh copolymers with systematic variations in composition were prepared by electrochemical polymerization from mixed monomer solutions in acetonitrile. The EPh monomer is a trifunctional crosslinking agent with three EDOTs around a central benzene ring. With increasing EPh content, the color of the copolymers changed from blue to yellow to red due to decreased absorption in the near infrared (IR) spectrum and increased absorption in the visible spectrum.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2015
With its high conductivity, tunable surface morphology, relatively soft mechanical response, high chemical stability, and excellent biocompatibility, poly(3,4-ethylenedioxythiophene) (PEDOT) has become a promising coating material for a variety of electronic biomedical devices. However, the relatively poor adhesion of PEDOT to inorganic metallic and semiconducting substrates still poses challenges for long-term applications. Here, we report that 2,3-dihydrothieno(3,4-b)(1,4)dioxine-2-carboxylic acid (EDOT-acid) significantly improves the adhesion between PEDOT thin films and inorganic solid electrodes.
View Article and Find Full Text PDFWe describe the synthesis and characterization of bicontinuous cubic poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer gels prepared within lyotropic cubic poly(oxyethylene)10 nonylphenol ether (NP-10) templates with Ia3[combining macron]d (gyroid, GYR) symmetry. The chemical polymerization of EDOT monomer in the hydrophobic channels of the NP-10 GYR phase was initiated by AgNO3, a mild oxidant that is activated when exposed to ultraviolet (UV) radiation. The morphology and physical properties of the resulting PEDOT gels were examined as a function of temperature and frequency using optical and electron microscopy, small-angle X-ray scattering (SAXS), dynamic mechanical spectroscopy, and electrochemical impedance spectroscopy (EIS).
View Article and Find Full Text PDFAfter extended implantation times, traditional intracortical neural probes exhibit a foreign-body reaction characterized by a reactive glial sheath that has been associated with increased system impedance and signal deterioration. Previously, we have proposed that the local in vivo polymerization of an electronically and ionically conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), might help to rebuild charge transport pathways across the glial scar between the device and surrounding parenchyma (Richardson-Burns et al 2007 J. Neural Eng.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2012
Polymer adsorption onto an artificial saliva (AS) layer is investigated using quartz-crystal microbalance with dissipation (QCM-D) and chitosan as the model polymer. QCM-D is utilized in an innovative manner to monitor in situ adsorption of chitosan (CH) onto a hydroxyapatite (HA) coated crystal and to examine the ability of the adsorbed layer to "protect" the HA upon sequential exposure to acidic solutions. After deposition of a thin AS layer (16 nm), the total thickness on the HA substrate increases to 37 nm upon exposure to CH at pH 5.
View Article and Find Full Text PDFDespite many advances in designing biocompatible materials, inflammation remains a problem in medical devices and implants. We report two methods, microcontact printing and photodegradation by UV exposure, to pattern dextran and hyaluronic acid on glass, as well as demonstrate their utility for use as an anti-inflammatory biomaterial. The dextran/glass patterned surface can be further modified by grafting hyaluronic acid to glass, creating a binary polysaccharide patterned surface.
View Article and Find Full Text PDF