Deep generative models for molecular generation have been gaining much attention as structure generators to accelerate drug discovery. However, most previously developed methods are chemistry-centric approaches, and comprehensive biological responses in the cell have not been taken into account. In this study, we propose a novel computational method, TRIOMPHE-BOA (transcriptome-based inference and generation of molecules with desired phenotypes using the Bayesian optimization algorithm), to generate new chemical structures of inhibitor or activator candidates for therapeutic target proteins by integrating chemically and genetically perturbed transcriptome profiles.
View Article and Find Full Text PDFComputational de novo drug design is a challenging issue in medicine, and it is desirable to consider all of the relevant information of the biological systems in a disease state. Here, we propose a novel computational method to generate drug candidate molecular structures from patient gene expression profiles via deep learning, which we call DRAGONET. Our model can generate new molecules that are likely to counteract disease-specific gene expression patterns in patients, which is made possible by exploring the latent space constructed by a transformer-based variational autoencoder and integrating the substructures of disease-correlated molecules.
View Article and Find Full Text PDF