Publications by authors named "Chikara Dohno"

Single-stranded RNA folds into a variety of secondary and higher-order structures. Distributions and dynamics of multiple RNA conformations are responsible for the biological function of RNA. We here developed a photoswitchable molecular glue for RNA, which could reversibly control the association of two unpaired RNA regions in response to light stimuli.

View Article and Find Full Text PDF

Psoralens and their derivatives, such as trioxsalen, have unique crosslinking features to DNA. However, psoralen monomers do not have sequence-specific crosslinking ability with the target DNA. With the development of psoralen-conjugated oligonucleotides (Ps-Oligos), sequence-specific crosslinking with target DNA has become achievable, thereby expanding the application of psoralen-conjugated molecules in gene transcription inhibition, gene knockout, and targeted recombination by genome editing.

View Article and Find Full Text PDF

Several psoralen-conjugated oligonucleotides (Ps-Oligos) have been developed as photo-crosslinkable oligonucleotides targeting DNA or RNA. To avoid potential off-target effects, it is important to investigate the selective photo-crosslinking reactivity of Ps-Oligos to DNA or RNA. However, the selectivity of these Ps-Oligos has not been reported in detail thus far.

View Article and Find Full Text PDF

The -1 programmed ribosomal frameshifting (-1 PRF) has been explored as a gene regulatory circuit for synthetic biology applications. The -1 PRF usually uses an RNA pseudoknot structure as the frameshifting stimulator. Finding a ligand-responsive pseudoknot with efficient -1 PRF activity is time consuming and is becoming a bottleneck for its development.

View Article and Find Full Text PDF

Selective targeting of biologically relevant RNAs with small molecules is a long-standing challenge due to the lack of clear understanding of the binding RNA motifs for small molecules. The standard SELEX procedure allows the identification of specific RNA binders (aptamers) for the target of interest. However, more effort is needed to identify and characterize the sequence-structure motifs in the aptamers important for binding to the target.

View Article and Find Full Text PDF

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder caused by a limited expansion of CGG repeats in the FMR1 gene. Degeneration of neurons in FXTAS cell models can be triggered by accumulation of polyglycine protein (FMRpolyG), a by-product of translation initiated upstream to the repeats. Specific aims of our work included testing if naphthyridine-based molecules could (i) block FMRpolyG synthesis by binding to CGG repeats in RNA, (ii) reverse pathological alterations in affected cells and (iii) preserve the content of FMRP, translated from the same FMR1 mRNA.

View Article and Find Full Text PDF

Short, complementary DNA single strands with mismatched base pairs cannot undergo spontaneous formation of duplex DNA (dsDNA). Mismatch binding ligands (MBLs) can compensate this effect, inducing the formation of the double helix and thereby acting as a molecular glue. Here, we present the rational design of photoswitchable MBLs that allow for reversible dsDNA assembly by light.

View Article and Find Full Text PDF

We demonstrated that a synthetic ligand NA, which selectively binds to a 5'-CAG-3'/5'-CAG-3' triad, induced repeat contractions during DNA polymerase-mediated primer extension through the CAG repeat template. A thorough capillary electrophoresis and sequencing analysis revealed that the d(CAG) template gave shortened nascent strands mainly containing 3-6 CTG units in the presence of NA.

View Article and Find Full Text PDF

Expanded CUG repeat RNA in the dystrophia myotonia protein kinase (DMPK) gene causes myotonic dystrophy type 1 (DM1) and sequesters RNA processing proteins, such as the splicing factor muscleblind-like 1 protein (MBNL1). Sequestration of splicing factors results in the mis-splicing of some pre-mRNAs. Small molecules that rescue the mis-splicing in the DM1 cells have drawn attention as potential drugs to treat DM1.

View Article and Find Full Text PDF

An expanded GGGGCC hexanucleotide (GC) repeat within the non-coding region of C9ORF72 gene has been identified as the most common genetic cause of FTD/ALS kindred, and synthetic ligand targeting this pathological expansion sequence holds a promising approach for the disease interference. We here describe the naphthyridine carbamate tetramer, p-NCTB, as a binding ligand to hairpin GC repeat. p-NCTB simultaneously recognizes two distal CGGG/CGGG sites in GC repeat DNA and RNA leading to the formation of the interhelical (inter- and intrastrand) binding complexes.

View Article and Find Full Text PDF

We have designed and synthesized a novel naphthyridine tetramer, p-NCTB, for the recognition of tandem guanine-guanine (G-G) mismatches in DNA. p-NCTB possesses a p-biphenyl linker connecting two naphthyridine carbamate dimer (NCD) moieties that recognize G-G mismatches. p-NCTB preferentially bound to tandem G-G mismatches in dCGGG/dCGGG over dCGG/dCGG.

View Article and Find Full Text PDF

The trinucleotide repeat expansion disorders (TREDs) constitute of a group of >40 hereditary neurodegenerative human diseases associated with abnormal expansion of repeated sequences, such as CAG repeats. The pathogenic factor is a transcribed RNA or protein whose function in the cell is compromised. The disorders are progressive and incurable.

View Article and Find Full Text PDF

We introduce the concept of molecular glues for RNA, in which specific RNA-binding small molecules induce designed structural changes in target functional RNAs, resulting in modulation of the functions. (Z)-NCTS is an RNA-mismatch-binding small molecule that recognizes 5'-r(XGG)-3'/5'-r(XGG)-3' sequences (X=U or A) and acts as a molecular glue for RNA. The binding of (Z)-NCTS brings two distinct 5'-r(XGG)-3' domains into contact with each other, and this can result in higher-order structural changes of target RNAs.

View Article and Find Full Text PDF

Expanded r(CUG) repeats are the cause of the neurological disorder myotonic dystrophy type 1 (DM1). The pathological features of DM1 include the formation of ribonuclear foci containing expanded r(CUG) repeats, which sequester the MBNL1 protein and lead to the misregulation of alternative pre-mRNA splicing. Small molecules that bind to the r(CUG) repeats and improve alternative splicing have therapeutic potential in the treatment of DM1.

View Article and Find Full Text PDF

Some RNA classes require folding into the proper higher-order structures to exert their functions. Hammerhead ribozyme (HHR) requires a folding conformation stabilized by tertiary interaction for full activity. A rationally engineered HHR was developed that was inactive, but could be activated by a synthetic RNA-binding ligand, naphthyridine carbamate tetramer with Z-stilbene linker (Z-NCTS).

View Article and Find Full Text PDF

Cyclophane-containing bis(2-amino-1,8-naphthyridine) moieties attached to variable linkers at the C2-position (linker B) were synthesized as cyclic mismatch-binding ligands (CMBLs). Ring-closing metathesis (RCM) is used as a key step for the introduction of double bonds at the linker B. Decreasing the size of the linker of the substrate, formation of the RCM products with an increasing trans/cis (E/Z) ratio was observed with moderate to high overall yields.

View Article and Find Full Text PDF

Future lipid membrane-associated DNA nanostructures are expected to find applications ranging from synthetic biology to nanomedicine. Here we have designed and synthesized DNA tiles and modified them with amphiphilic covalent moieties. dod-DEG groups, which consist of a hydrophilic diethylene glycol (DEG) and a hydrophobic dodecyl group, are introduced at the phosphate backbone to create amphiphilic DNA strands which are subsequently introduced into one face of the DNA tiles.

View Article and Find Full Text PDF

The development of small molecules that can recognize specific RNA secondary and tertiary structures is currently an important research topic for developing tools to modulate gene expression and therapeutic drugs. Expanded CUG trinucleotide repeats, known as toxic RNA, capture the splicing factor MBNL1 and are causative of neurological disorder myotonic dystrophy type 1 (DM1). Herein, the rational molecular design, synthesis, and binding analysis of 2,9-diaminoalkyl-substituted 1,10-phenanthroline (DAP), which bound to CUG trinucleotide repeats, is described.

View Article and Find Full Text PDF

A newly designed cyclic bis-naphthyridine carbamate dimer CMBL4: with a limited conformational flexibility was synthesized and characterized. Absorption spectra revealed that two naphthyridines in CMBL4: were stacked on each other in aqueous solutions. The most efficient binding of CMBL4: to DNA was observed for the sequence 5'-T-3'/5'-GG-3' (T/GG) with the formation of a 1:1 complex, which is one of possible structural elements involved in the higher order structures of (TGG)n repeat DNA triggering the genome microdeletion.

View Article and Find Full Text PDF

We describe a new molecular design, synthesis, and investigation of small molecules that bind to CTG trinucleotide repeats in DNA. 1H-Pyrrolo[3,2-h]quinoline-8-amine (PQA) has a tricyclic aromatic system with unique non-linear hydrogen-bonding surface complementary to thymine. We have synthesized a series of PQA derivatives with different alkylamino linkers.

View Article and Find Full Text PDF

The expansion of CAG repeats in the human genome causes the neurological disorder Huntington's disease. The small-molecule naphthyridine-azaquinolone NA we reported earlier bound to the CAG/CAG motif in the hairpin structure of the CAG repeat DNA. In order to investigate and improve NA-binding to the CAG repeat DNA and RNA, we conducted systematic structure-binding studies of NA to CAG repeats.

View Article and Find Full Text PDF

New ligands with three-ring system for the recognition of a cytosine bulge and a cytosine-cytosine mismatch were designed and synthesized. The 2-amino-1,10-phenanthroline was selected as a recognition unit among the possible three-ring systems of a parent recognition unit of 2-amino-1,8-naphthyridine. The 3-aminopropanamide of 2-amino-1,10-phenanthroline (APM) bound to the cytosine bulge DNA.

View Article and Find Full Text PDF

DNA is a promising functional molecule to modify and design lipid membrane functions. In order to use DNA in a hydrophilic-hydrophobic interface including lipid membrane, we have developed an amphiphilic DNA having dodecyl phosphotriester linkages (dod-DNA). Herein, we report the binding of a series of amphiphilic dod-DNAs to the lipid bilayer membrane.

View Article and Find Full Text PDF

The hairpin structure is one of the most common secondary structures in RNA and holds a central position in the stream of RNA folding from a non-structured RNA to structurally complex and functional ribonucleoproteins. Since the RNA secondary structure is strongly correlated to the function and can be modulated by the binding of small molecules, we have investigated the modulation of RNA folding by a ligand-assisted formation of loop-loop complexes of two RNA hairpin loops. With a ligand (NCT6), designed based on the ligand binding to the G-G mismatches in double-stranded DNA, we successfully demonstrated the formation of both inter- and intra-molecular NCT6-assisted complex of two RNA hairpin loops.

View Article and Find Full Text PDF

The construction of an artificial riboswitch is based on a ligand-RNA pair without any molecular biology-based selection processes. The ligand selectively and significantly stabilized an RNA duplex containing an r(XGG)/r(XGG) sequence (X=U, A, G). The integration of the ligand-binding sequences into the 5'-untranslated region of mRNA provided an artificial riboswitch that was responsive to Z-NCTS.

View Article and Find Full Text PDF