Phthalate esters are commonly used plasticizers; however, some are suspected to cause reproductive toxicity. Administration of high doses of di-(2-ethylhexyl) phthalate (DEHP) induces germ cell death in male rodents. Mono-(2-ethylhexyl) phthalate (MEHP), a hydrolyzed metabolite of DEHP, appears to be responsible for this testicular toxicity; however, the underlying mechanism of this chemical's action remains unknown.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2009
Capsaicin is widely used as a food additive and as an analgesic agent. Besides its well-known role in nociception, which is mediated by vanilloid receptor 1 specifically expressed in dorsal root ganglion neurons, capsaicin has also been considered as a potential anticancer agent, as it inhibits cell proliferation and induces apoptosis in various types of cancer cells. Here we identified a new molecular target of capsaicin from human myeloid leukemia cells.
View Article and Find Full Text PDFHaem is a prosthetic group for haem proteins, which play an essential role in oxygen transport, respiration, signal transduction, and detoxification. In haem biosynthesis, the haem precursor protoporphyrin IX (PP IX) must be accumulated into the mitochondrial matrix across the inner membrane, but its mechanism is largely unclear. Here we show that adenine nucleotide translocator (ANT), the inner membrane transporter, contributes to haem biosynthesis by facilitating mitochondrial accumulation of its precursors.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2008
We developed a unique screening system that consists of combination of high photo-sensitivity of photoprotein aequorin (AQ) and our developed high-performance affinity purification system. In the present study, we demonstrated to detect the specific interaction between methotrexate (MTX) and its target dihydrofolate reductase (DHFR) fused with AQ. We succeeded to prepare highly purified AQ-fused DHFR, which showed high sensitive light emission.
View Article and Find Full Text PDFMethotrexate (MTX) is the anticancer and antirheumatoid drug that is believed to block nucleotide synthesis and cell cycle by inhibiting dihydrofolate reductase activity. We have developed novel affinity matrices, termed SG beads, that are easy to manipulate and are compatible with surface functionalization. Using the matrices, here we present evidence that deoxycytidine kinase (dCK), an enzyme that acts in the salvage pathway of nucleotide biosynthesis, is another target of MTX.
View Article and Find Full Text PDF