Reverse cholesterol transport (RCT) is an antiatherogenic process in which excessive cholesterol from peripheral tissues is transported to the liver and finally excreted from the body via the bile. The nuclear receptor liver receptor homolog 1 (LRH-1) drives expression of genes regulating RCT, and its activity can be modified by different posttranslational modifications. Here, we show that atherosclerosis-prone mice carrying a mutation that abolishes SUMOylation of LRH-1 on K289R develop less aortic plaques than control littermates when exposed to a high-cholesterol diet.
View Article and Find Full Text PDFAltered adipose tissue formation is a well-known effectors of obesity and T2D. Here, we describe the role of Lrh1 and its co-repressor Shp in the control of adipocyte formation. Expression of Lrh1 in the pre-adipocyte containing SVF is induced in obese mice models and humans while Shp expression is reduced.
View Article and Find Full Text PDFBackground: Besides well-established roles of bile acids (BA) in dietary lipid absorption and cholesterol homeostasis, it has recently become clear that BA is also a biological signaling molecule. We have shown that strategies aimed at activating TGR5 by increasing the BA pool size with BA administration may constitute a significant therapeutic advance to combat the metabolic syndrome and suggest that such strategies are worth testing in a clinical setting. Bile acid binding resin (BABR) is known not only to reduce serum cholesterol levels but also to improve glucose tolerance and insulin resistance in animal models and humans.
View Article and Find Full Text PDFLiver receptor homolog 1 (LRH-1), an established regulator of cholesterol and bile acid homeostasis, has recently emerged as a potential drug target for liver disease. Although LRH-1 activation may protect the liver against diet-induced steatosis and insulin resistance, little is known about how LRH-1 controls hepatic glucose and fatty acid metabolism under physiological conditions. We therefore assessed the role of LRH-1 in hepatic intermediary metabolism.
View Article and Find Full Text PDFThe nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase SIRT1 is a major metabolic regulator activated by energy stresses such as fasting or calorie restriction. SIRT1 activation during fasting not only relies on the increase in the NAD(+)/NADH ratio caused by energy deprivation but also involves an upregulation of SIRT1 mRNA and protein levels in various metabolic tissues. We demonstrate that SIRT1 expression is controlled systemically by the activation of the cyclic AMP response-element-binding protein upon low nutrient availability.
View Article and Find Full Text PDFWe evaluated the metabolic impact of farnesoid X receptor (FXR) activation by administering a synthetic FXR agonist (GW4064) to mice in which obesity was induced by a high fat diet. Administration of GW4064 accentuated body weight gain and glucose intolerance induced by the high fat diet and led to a pronounced worsening of the changes in liver and adipose tissue. Mechanistically, treatment with GW4064 decreased bile acid (BA) biosynthesis, BA pool size, and energy expenditure, whereas reconstitution of the BA pool in these GW4064-treated animals by BA administration dose-dependently reverted the metabolic abnormalities.
View Article and Find Full Text PDFMitochondrial Ca(2+) signals have been proposed to accelerate oxidative metabolism and ATP production to match Ca(2+)-activated energy-consuming processes. Efforts to understand the signaling role of mitochondrial Ca(2+) have been hampered by the inability to manipulate matrix Ca(2+) without directly altering cytosolic Ca(2+). We were able to selectively buffer mitochondrial Ca(2+) rises by targeting the Ca(2+)-binding protein S100G to the matrix.
View Article and Find Full Text PDFGlucose-evoked mitochondrial signals augment ATP synthesis in the pancreatic β cell. This activation of energy metabolism increases the cytosolic ATP/ADP ratio, which stimulates plasma membrane electrical activity and insulin granule exocytosis. We have recently demonstrated that matrix pH increases during nutrient stimulation of the pancreatic β cell.
View Article and Find Full Text PDFDuring fasting and after exercise, skeletal muscle efficiently switches from carbohydrate to lipid as the main energy source to preserve glycogen stores and blood glucose levels for glucose-dependent tissues. Skeletal muscle cells sense this limitation in glucose availability and transform this information into transcriptional and metabolic adaptations. Here we demonstrate that AMPK acts as the prime initial sensor that translates this information into SIRT1-dependent deacetylation of the transcriptional regulators PGC-1alpha and FOXO1, culminating in the transcriptional modulation of mitochondrial and lipid utilization genes.
View Article and Find Full Text PDFGenome-wide studies reveal that transcription by RNA polymerase II (Pol II) is dynamically regulated. To obtain a comprehensive view of a single transcription cycle, we switched on transcription of five long human genes (>100 kbp) with tumor necrosis factor-alpha (TNFalpha) and monitored (using microarrays, RNA fluorescence in situ hybridization, and chromatin immunoprecipitation) the appearance of nascent RNA, changes in binding of Pol II and two insulators (the cohesin subunit RAD21 and the CCCTC-binding factor CTCF), and modifications of histone H3. Activation triggers a wave of transcription that sweeps along the genes at approximately 3.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
February 2010
Rodents undergo gestational hepatomegaly to meet the increased metabolic demands on the maternal liver during pregnancy. This is an important physiological process, but the mechanisms and signals driving pregnancy-induced liver growth are not known. Here, we show that liver growth during pregnancy precedes maternal body weight gain, is proportional to fetal number, and is a result of hepatocyte hypertrophy associated with cell-cycle progression, polyploidy, and altered expression of cell-cycle regulators p53, Cyclin-D1, and p27.
View Article and Find Full Text PDFTGR5 is a G protein-coupled receptor expressed in brown adipose tissue and muscle, where its activation by bile acids triggers an increase in energy expenditure and attenuates diet-induced obesity. Using a combination of pharmacological and genetic gain- and loss-of-function studies in vivo, we show here that TGR5 signaling induces intestinal glucagon-like peptide-1 (GLP-1) release, leading to improved liver and pancreatic function and enhanced glucose tolerance in obese mice. In addition, we show that the induction of GLP-1 release in enteroendocrine cells by 6alpha-ethyl-23(S)-methyl-cholic acid (EMCA, INT-777), a specific TGR5 agonist, is linked to an increase of the intracellular ATP/ADP ratio and a subsequent rise in intracellular calcium mobilization.
View Article and Find Full Text PDFWe show here high levels of expression and secretion of the chemokine CXC ligand 5 (CXCL5) in the macrophage fraction of white adipose tissue (WAT). Moreover, we find that CXCL5 is dramatically increased in serum of human obese compared to lean subjects. Conversely, CXCL5 concentration is decreased in obese subjects after a weight reduction program, or in obese non-insulin-resistant, compared to insulin-resistant, subjects.
View Article and Find Full Text PDFThe NAD(+)-dependent deacetylase SIRT1 controls metabolic processes in response to low nutrient availability. We report the metabolic phenotype of mice treated with SRT1720, a specific and potent synthetic activator of SIRT1 that is devoid of direct action on AMPK. SRT1720 administration robustly enhances endurance running performance and strongly protects from diet-induced obesity and insulin resistance by enhancing oxidative metabolism in skeletal muscle, liver, and brown adipose tissue.
View Article and Find Full Text PDFFemale fertility requires normal ovarian follicular growth and ovulation. The nuclear receptor liver receptor homolog 1 has been implicated in processes as diverse as bile acid metabolism, steroidogenesis, and cell proliferation. In the ovary, Lrh1 is expressed exclusively in granulosa and luteal cells.
View Article and Find Full Text PDFBile acids (BAs) are water-soluble end products from cholesterol metabolism and are essential for efficient absorption of dietary lipids. By using targeted somatic mutagenesis of the nuclear receptor liver receptor homolog 1 (LRH-1) in mouse hepatocytes, we demonstrate here that LRH-1 critically regulates the physicochemical properties of BAs. The absence of LRH-1 and subsequent deficiency of Cyp8b1 eliminate the production of cholic acid and its amino acid conjugate taurocholic acid and increase the relative amounts of less amphipathic BA species.
View Article and Find Full Text PDFThe role of the tumor suppressor retinoblastoma protein (pRb) has been firmly established in the control of cell cycle, apoptosis, and differentiation. Recently, it was demonstrated that lack of pRb promotes a switch from white to brown adipocyte differentiation in vitro. We used the Cre-Lox system to specifically inactivate pRb in adult adipose tissue.
View Article and Find Full Text PDFObjective: Tumor necrosis factor (TNF)-alpha initiates numerous changes in endothelial cell (EC) gene expression that contributes to the pathology of various diseases including inflammation. We hypothesized that TNF-alpha-mediated gene induction involves multiple signaling pathways, and that inhibition of one or more of these pathways may selectively target subsets of TNF-alpha-responsive genes and functions.
Methods And Results: Human umbilical vein endothelial cells (ECs) were preincubated with inhibitors of PI3 kinase (LY294002), histone deacetylases (HDAC) (trichostatin A [TSA]), de novo protein synthesis (CHX), proteasome (MG-132), and GATA factors (K-11430) before exposure to TNF-alpha at 4 hours and analyzed by microarray.
While bile acids (BAs) have long been known to be essential in dietary lipid absorption and cholesterol catabolism, in recent years an important role for BAs as signalling molecules has emerged. BAs activate mitogen-activated protein kinase pathways, are ligands for the G-protein-coupled receptor (GPCR) TGR5 and activate nuclear hormone receptors such as farnesoid X receptor alpha (FXR-alpha; NR1H4). FXR-alpha regulates the enterohepatic recycling and biosynthesis of BAs by controlling the expression of genes such as the short heterodimer partner (SHP; NR0B2) that inhibits the activity of other nuclear receptors.
View Article and Find Full Text PDFJ Atheroscler Thromb
February 2005
In addition to a lipid-lowering effect, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have an effect on the expression levels of many genes. In order to elucidate the range of this effect as comprehensively as possible, we investigated the changes in gene expression profiles brought about by atorvastatin or pitavastatin in cultured human umbilical vein endothelial cells (HUVEC), cultured human coronary artery smooth muscle cells (HCASMC) and cultured human hepatocarcinoma Hep G2 cells by means of DNA microarrays. Among the 6146 genes in the array, statins affected the expression levels of genes involved in coagulation, vascular constriction and cell growth in a cell-type specific manner.
View Article and Find Full Text PDFThe induction of specific tolerance would be the ultimate achievement in transplant immunology, but the precise mechanisms of immunologic tolerance remain largely unknown. Here, we investigated global gene expression analysis in tolerizing murine cardiac allografts by means of oligonucleotide microarrays. Tolerance induction was achieved in cardiac allografts from BALB/c to C57BL/6 mice by daily intraperitoneal injection of anti-CD80 and anti-CD86 monoclonal antibodies (mAbs).
View Article and Find Full Text PDFLarge-scale clinical trials have demonstrated significant reductions in cardiovascular events following statin therapy. The observed benefit of statin therapy, however, may be greater in these trials than is to be expected from lowering lipid levels alone. In order to clarify the mechanism by which statins prevent cardiovascular events in vascular wall cells, we investigated the changes in gene expression profiles after incubation with atorvastatin or pitavastatin in cultured human umbilical vein endothelial cells using DNA microarrays.
View Article and Find Full Text PDF