Publications by authors named "Chika Washizu"

Genetic variations of TREM2 have been implicated as a risk factor of Alzheimer's disease (AD). Recent studies suggest that the loss of TREM2 function compromises microglial responses to the accumulation of amyloid beta. Previously, we found that exon 3 of TREM2 is an alternative exon whose skipping leads to a reduction in full-length TREM2 protein by inducing nonsense-mediated mRNA decay.

View Article and Find Full Text PDF

FUS/TLS is an RNA/DNA-binding protein associated with neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Previously, we found that a prion-like domain in the N-terminus of FUS/TLS mediates co-aggregation between FUS/TLS and mutant huntingtin, the gene product of Huntington's disease (HD). Here, we show that heterozygous knockout of FUS/TLS worsened the phenotypes of model mice of (HD, but not spinal and bulbar muscular atrophy (SBMA).

View Article and Find Full Text PDF

Introduction: FUS/TLS is an RNA-binding protein whose genetic mutations or pathological inclusions are associated with neurological diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration, and essential tremor (ET). It is unclear whether their pathogenesis is mediated by gain or loss of function of FUS/TLS.

Results: Here, we established outbred FUS/TLS knockout mice to clarify the effects of FUS/TLS dysfunction in vivo.

View Article and Find Full Text PDF

Huntington's disease (HD) is a dominantly inherited genetic disease caused by mutant huntingtin (htt) protein with expanded polyglutamine (polyQ) tracts. A neuropathological hallmark of HD is the presence of neuronal inclusions of mutant htt. p62 is an important regulatory protein in selective autophagy, a process by which aggregated proteins are degraded, and it is associated with several neurodegenerative disorders including HD.

View Article and Find Full Text PDF

In some neurological diseases caused by repeat expansions such as myotonic dystrophy, the RNA-binding protein muscleblind-like 1 (MBNL1) accumulates in intranuclear inclusions containing mutant repeat RNA. The interaction between MBNL1 and mutant RNA in the nucleus is a key event leading to loss of MBNL function, yet the details of this effect have been elusive. Here, we investigated the mechanism and significance of MBNL1 nuclear localization.

View Article and Find Full Text PDF

TLS (translocated in liposarcoma), also known as FUS (fused in sarcoma), is an RNA/DNA-binding protein that plays regulatory roles in transcription, pre-mRNA splicing and mRNA transport. Mutations in TLS are responsible for familial amyotrophic lateral sclerosis (ALS) type 6. Furthermore, TLS-containing intracellular inclusions are found in polyglutamine diseases, sporadic ALS, non-SOD1 familial ALS and a subset of frontotemporal lobar degeneration, indicating a pathological significance of TLS in a wide variety of neurodegenerative diseases.

View Article and Find Full Text PDF

The expression and function of the skeletal muscle chloride channel CLCN1/ClC-1 is regulated by alternative splicing. Inclusion of the CLCN1 exon 7A is aberrantly elevated in myotonic dystrophy (DM), a genetic disorder caused by the expansion of a CTG or CCTG repeat. Increased exon 7A inclusion leads to a reduction in CLCN1 function, which can be causative of myotonia.

View Article and Find Full Text PDF

Huntington's disease (HD) is a fatal neurodegenerative disorder. Despite a tremendous effort to develop therapeutic tools in several HD models, there is no effective cure at present. Acidosis has been observed previously in cellular and in in vivo models as well as in the brains of HD patients.

View Article and Find Full Text PDF

In Huntington's disease (HD), mutant Huntingtin, which contains expanded polyglutamine stretches, forms nuclear aggregates in neurons. The interactions of several transcriptional factors with mutant Huntingtin, as well as altered expression of many genes in HD models, imply the involvement of transcriptional dysregulation in the HD pathological process. The precise mechanism remains obscure, however.

View Article and Find Full Text PDF