Publications by authors named "Chika Tatsuzawa"

Identifying the properties of the rapid eye movement (REM) sleep circuitry and its relation to diseases has been challenging due to the neuronal heterogeneity of the brainstem. Here, we show in mice that neurons in the pontine sublaterodorsal tegmentum (SubLDT) that express corticotropin-releasing hormone-binding protein (Crhbp neurons) and project to the medulla promote REM sleep. Within the medullary area receiving projections from Crhbp neurons, neurons expressing nitric oxide synthase 1 (Nos1 neurons) project to the SubLDT and promote REM sleep, suggesting a positively interacting loop between the pons and the medulla operating as a core REM sleep circuit.

View Article and Find Full Text PDF

Background: Caffeoylquinic acid (CQA), which is abundant in coffee beans and Centella asiatica, reportedly improves cognitive function in Alzheimer's disease (AD) model mice, but its effects on neuroinflammation, neuronal loss, and the amyloid-β (Aβ) plaque burden have remained unclear.

Objective: To assess the effects of a 16-week treatment with CQA on recognition memory, working memory, Aβ levels, neuronal loss, neuroinflammation, and gene expression in the brains of 5XFAD mice, a commonly used mouse model of familial AD.

Methods: 5XFAD mice at 7 weeks of age were fed a 0.

View Article and Find Full Text PDF

Despite the established roles of the dopaminergic system in promoting arousal, the effects of loss of dopamine on the patterns of sleep and wakefulness remain elusive. Here, we examined the sleep architecture of dopamine-deficient (DD) mice, which were previously developed by global knockout of tyrosine hydroxylase and its specific rescue in noradrenergic and adrenergic neurons. We found that DD mice have reduced time spent in wakefulness.

View Article and Find Full Text PDF

The molecular mechanism regulating sleep largely remains to be elucidated. In humans, families that carry mutations in , which encodes the transcription factor AP-2β, self-reported sleep abnormalities such as short-sleep and parasomnia. Notably, AP-2 transcription factors play essential roles in sleep regulation in the nematode and the fruit fly Thus, AP-2 transcription factors might have a conserved role in sleep regulation across the animal phyla.

View Article and Find Full Text PDF

Alzheimer's disease (AD) patients often suffer from sleep disturbances. Alterations in sleep, especially rapid eye movement sleep (REMS), can precede the onset of dementia. To accurately characterize the sleep impairments accompanying AD and their underlying mechanisms using animal models, it is crucial to use models in which brain areas are affected in a manner similar to that observed in the actual patients.

View Article and Find Full Text PDF

Classical transection studies suggest that, in addition to the hypothalamus, the brainstem is essential for non-rapid eye movement (NREM) sleep. The circuits underlying this function, however, have remained largely unknown. We identified a circuit distributed in the midbrain, pons, and medulla that promotes NREM sleep in mice.

View Article and Find Full Text PDF