Hydrogels with different functionalities such as printability, antifreezing properties, adhesion, biocompatibility, and toughness are being continually developed. However, it has been extremely challenging to design adhesive, antifreezing, tough, and biocompatible multifunctional hydrogels with complex shapes simultaneously and prepare them in a short period. In this paper, novel composite hydrogels, which consist of poly(vinyl alcohol) grafted with styrylpyridinium group (PVA-SbQ) and TEMPO-oxidized cellulose nanofibrils (CNF), were successfully synthesized via UV photo-cross-linking.
View Article and Find Full Text PDFCurrently, the lack of bioinks and long printing time limits the further development of biofabrication. Here we report a novel biocompatible, multi-functional and tough 3D printable hydrogel via visible light photocrosslinking of polyvinyl alcohol bearing styrylpyridinium group (PVA-SbQ). The high-resolution PVA-SbQ hydrogels with different designed shapes can be generated via laser direct-writing in 30 s without extra toxic crosslinkers or photoinitiators, and demonstrates excellent biocompatibility.
View Article and Find Full Text PDF