The raised source/drain (RSD) structure is one of thin film transistor designs that is often used to improve device characteristics. Many studies have mentioned that the high impact ionization rate occurring at a drain side can be reduced, owing to a raised source/drain area that can disperse the drain electric field. In this study, we will discuss how the electric field at the drain side of an RSD device is reduced by a vertical lightly doped drain (LDD) scheme rather than a RSD structure.
View Article and Find Full Text PDFMicromachines (Basel)
May 2020
A rating voltage of 150 and 200 V split-gate trench (SGT) power metal-oxide- semiconductor field-effect transistor (Power MOSFET) with different epitaxial layers was proposed and studied. In order to reduce the specific on-resistance (R) of a 150 and 200 V SGT power MOSFET, we used a multiple epitaxies (EPIs) structure to design it and compared other single-EPI and double-EPIs devices based on the same fabrication process. We found that the bottom epitaxial (EPI) layer of a double-EPIs structure can be designed to support the breakdown voltage, and the top one can be adjusted to reduce the R.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
March 2014
Single-bridged (SB) and multi-bridged (MB) carbon nanotubes (CNTs) were laterally grown between two electrodes capped on a thin nickel film, which functioned as catalysts. SB CNTs with outermost shell-end and embedded-end contacts on the electrodes showed varistor- or metal-like current-voltage (IV) characteristics. The devices were measured with fixed-amplitude AC superimposed on varying bias voltages.
View Article and Find Full Text PDF