We developed the approach to detect single-nucleotide mutation with peptide nucleic acid (PNA) probes and time-resolved fluorometry using a fluorescence lanthanide chelate label, {2,2',2'',2'''-{4'-{[(4,6-dichloro-1,3,5-triazin-2-yl)amino]biphenyl-4-yl}-2,2': 6',2''-terpyridine-6,6''-diyl}bis(methylenenitrilo)}tetrakis(acetato)}europium(III) (DTBTA-Eu3+). Compared with DNA probes, PNA probes showed lower mismatch signals and gave higher signal/noise (S/N) ratios. Using the system, we examined the single-nucleotide mutations of codon 12 in the c-Ha-ras gene of PCR amplicons of genome DNAs isolated from human umbilical vein endothelial cells (HUVECs) and T24 cells.
View Article and Find Full Text PDFThe new europium(III) chelate [2,2',2'',2'''-[[4'-(aminobiphenyl-4-yl)-2,2':6',2''-terpyridine- 6,6''-diyl]bis(methylenenitrilo)]tetrakis(acetato)] europium(III) (ATBTA-Eu3+) and its 4,6-dichloro-1,3,5-triazinyl and succinimidyl derivatives (DTBTA and NHS-ATBTA, respectively) were synthesized and characterized. Both labeling complexes DTBTA-Eu3+ and NHS-ATBTA-Eu3+ are luminescent. Especially DTBTA-Eu3+ is strongly luminescent, with a luminescence quantum yield of 9.
View Article and Find Full Text PDF