Publications by authors named "Chihiro Akimoto"

Intracellular DNA triggers interferon release during the innate immune response. Cyclic GMP-AMP synthase (cGAS) senses intracellular double-stranded DNA not only in response to viral infection but also under autoimmune conditions. Measuring the levels of cyclic GMP-AMP (cGAMP) as a second messenger of cGAS activation is important to elucidate the physiological and pathological roles of cGAS.

View Article and Find Full Text PDF

Prostate cancer development is associated with hyperactive androgen signaling. However, the molecular link between androgen receptor (AR) function and humoral factors remains elusive. A prostate cancer mouse model was generated by selectively mutating the AR threonine 877 into alanine in prostatic epithelial cells through Cre-ERT2-mediated targeted somatic mutagenesis.

View Article and Find Full Text PDF

Testis-specific protein on Y chromosome (TSPY) is an ampliconic gene on the Y chromosome, and genetic interaction with gonadoblastoma has been clinically established. However, the function of the TSPY protein remains to be characterized in physiological and pathological settings. In the present study, we observed coexpression of TSPY and the androgen receptor (AR) in testicular germ-cell tumors (TGCTs) in patients as well as in model cell lines, but such coexpression was not seen in normal testis of humans or mice.

View Article and Find Full Text PDF

The status of chromatin during spermatogenesis is dynamically regulated by specific histone codes or stage-specific histone changes. The functional links between such epigenetic regulation and proteins regulating meiosis are largely unknown. In mammals, genes encoded on the Y chromosome are thought to possess male-specific biological functions.

View Article and Find Full Text PDF

The intracellular redox state regulates all biological processes including gene expression. The glucocorticoid receptor (GR), a hormone-dependent transcription factor, is affected by the redox state. GR translocation from the cytoplasm to the nucleus is regulated by oxidative stress.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) control cell proliferation, differentiation and fate through modulation of gene expression by partially base-pairing with target mRNA sequences. Drosha is an RNase III enzyme that is the catalytic subunit of a large complex that cleaves pri-miRNAs with distinct structures into pre-miRNAs. Here, we show that both the p68 and p72 DEAD-box RNA helicase subunits in the mouse Drosha complex are indispensable for survival in mice, and both are required for primary miRNA and rRNA processing.

View Article and Find Full Text PDF