In this study, we compared muscle fatigue induced by high-intensity interval exercise (HIIE) and moderate-intensity continuous exercise (MICE), with a focus on changes in the function of sarcoplasmic reticulum (SR) and myofibril. To achieve the aim of this study with mechanically skinned fibers with sealed transverse tubules and intact SR membrane, myofibrillar Ca sensitivity, depolarization-induced force, and action potential-induced force were evaluated. Rat gastrocnemius muscles were subjected to HIIE-mimicking or MICE-mimicking stimulation in situ.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
May 2019
Skeletal muscles undergoing vigorous activity can enter a state of prolonged low-frequency force depression (PLFFD). This study was conducted to examine whether antioxidant treatment is capable of accelerating the recovery from PLFFD, with a focus on the function of the sarcoplasmic reticulum (SR) and myofibril. One hour before fatiguing stimulation (FS) was administered, rats received an intraperitoneal injection of Eukarion (EUK-134), which mimics the activities of superoxide dismutase and catalase.
View Article and Find Full Text PDFObjective: Eccentric contraction (ECC) is a contraction in which skeletal muscles are stretched while contracting. The aim of this study was to determine how ingestion of soy protein isolate (SPI) or animal-based proteins affect force deficit, calpain activation, and proteolysis of calcium ion (Ca)-regulatory proteins in rat fast-twitch muscles subjected to ECC.
Methods: In the first experiment, male Wistar rats were randomly assigned to a control and an SPI group, which were fed a 20% casein and a 20% SPI diet, respectively, for 28 d before the ECC protocol.
The aim of this study was to examine whether thermal pretreatment can accelerate recovery from prolonged low-frequency force depression. The hindlimbs of thermal treated (T-treated) rats were immersed in water heated to 42.0°C for 20 min (thermal pretreatment).
View Article and Find Full Text PDFIt has been shown that calpains are involved in the proteolysis of muscle proteins that occurs with eccentric contraction (ECC) and that exogenously applied nitric oxide decreases the calpain-mediated proteolysis. The aim of this study was to examine the effects of ingestion of l-arginine (ARG), a nitric oxide precursor, on ECC-related calpain activation. In the first and second experiments, male Wistar rats were given ARG in water for 7 days starting from 3 days before the ECC protocol (average ingestion, ~600 mg kg-body wt day ).
View Article and Find Full Text PDF